Interview #3, Dr. Reşat Uzmen, Nuclear Technology Director of FİGES. Part of the Thorium Student Guild Interview Series, “Leading to Nuclear”

Integrated Industrial Zone Powered by Molten Salt courtesy of Figes of Turkey
Dr. Reşat Uzmen

Since the 1960’s Turkey were trying to get involved with nuclear energy. Turkey was one of the countries that participated in the International Conference on the Peaceful Uses of Atomic Energy, held in Geneva in 1955 September. There is no doubt that Turkey wants to use nuclear energy for energy production. In Turkey, there are many experts that have knowledge about nuclear fission technology. Dr. Reşat Uzmen is one of the most important people who is experienced in the nuclear fuel area. During the interview, his ideas and visions enlighten us about the future of Molten Salt Fission Technology. Here is another instructive interview for building a MSR!

The Atoms for Peace symbol was placed over the door to the American swimming pool reactor building during the 1955 International Conference on the Peaceful Uses of Atomic Energy in Geneva, often called the Atoms for Peace conference.

Rana
President of the Student Guild
The Thorium Network

Leading to Nuclear Interview Series, Interview #3, Dr Resat Uzmen of Figes Turkey

Mr. Reşat, can you tell us a little about yourself?

I graduated from İstanbul Technical University (İTU) in the chemical engineering department. I did my master’s degree in İTU also. As soon as I finished the department I became a researcher in The Çekmece Nuclear Research and Training Center, known as ÇNAEM. My research was about how uranium could be treated to obtain an uranium concentrate. I did my doctor’s degree in that topic. Back then, it was so hard to get information because it is a delicate technology. That’s why we did the research by ourselves. Think about that: there was no internet! There was a library in ÇNAEM, it still remains there. All the reports that were collected from all over the world were kept here. We benefit from those reports that were about uranium and thorium. In addition, getting chemicals was difficult. The ores that we were working on were coming from Manisa so mine was tough to process. Despite all these obstacles Turkey needed uranium so we have done what has to be done. I am the founder of “the nuclear fuel technology department in ÇNAEM”. This department was focused on producing uranium fuel that could be ready for fuelling and we did it. We produced uranium pellets by ourselves in our laboratories. We did research about ore sorting of thorium and how it can be used in nuclear reactors. Now I am working as a nuclear technology director at FİGES.

Dr. Reşat Uzmen, Thorium NTE Field in Burdur Turkey

“Turkey is capable of designing its own reactor now!”

Dr. Reşat Uzmen

What are your thoughts on Turkey’s nuclear energy adventure? Although nuclear engineering education has been given at Hacettepe University since 1982, Turkey has never been able to gain an advantage in nuclear energy. What could be the main reasons for this?

Nuclear energy needs government support and government incentive. Government policy must include nuclear energy. In Turkey, nuclear energy was too personal. A government is formed then a team becomes the charge of the Turkey Atomic Energy Agency and this team is working hard, trying to encourage people about nuclear energy but then the new government is formed and the team is changed. Unfortunately, this is how it is done in Turkey. Also, you need money to build reactors. There were some countries that try to build a nuclear reactor in Turkey. Once CANDUs was very popular in Turkey. Canadians supported us a lot. Argentineans came with CAREM design and wanted to develop the design with Turkey also they wanted to build CAREM in Turkey, it was a great offer but the politicians at that time were not open up to this idea. Nuclear energy must be government policy and it should not be changed by different governments.

As you know, there is a PWR-type reactor under construction in cooperation with Rosatom and Akkuyu in our country. Do you think Turkey’s first reactor selection was the right choice?

This cooperation is not providing us any nuclear technology. When The Akkuyu Nuclear Power Plant is finished we will have a nuclear reactor that is operating in Turkey but we can not get any nuclear technology transformation. Right now Turkey can not construct the sensitive components of a nuclear reactor. Akkuyu is like a system that produces energy for Turkey. It would be the same thing if Russia build that plant in a place that is near Turkey. In addition, there is the fate of spent fuels. Russia takes away all the spent fuels, these spent fuels can be removed from Turkey in two ways: by water, starting from the Akkuyu harbor, the ship will pass through the Turkish straits, then pass to the Black Sea and pass through the Novorossiysk harbor to reach Siberia and by land, from Akkuyu it will arrive in Samsun or Trabzon then by water the ship will arrive in Siberia. I suppose spent fuels are going to be transported by water.

What are your thoughts on molten salt reactors?

Molten Salt Reactor is a Gen. 4 reactor and has a lot of advantages. First of all, the fuel of the MSR is molten salt so it is a liquid fuel. Since I am interested in the fuel production part of nuclear energy I am aware of the challenges of solid fuel production. Having liquid fuel is a big virtue. Liquid fuel can be ThF4-UF4. The fuel production step can proceed as: UF4 may be imported as enriched uranium. If you have the technology then UF₆ may be imported as enriched uranium then UF₆ can be converted to UF4. After that step fabrication of the liquid fuel is easier than solid fuel. Second, MSR has a lot of developments in the safety systems of a nuclear reactor. There is no fuel melting danger because it is already melted. The liquid fuel is approximately 700 °C. The important point is molten salt may freeze. If fuel temperature is below approximately 550°C the fuel becomes solid we don’t want that to happen. Also, the fuel has a negative temperature coefficient which means that as the temperature of the fuel rises reactivity of the fuel is going to decrease. There is a freeze plug at the bottom of the core. If the core overheats the freeze plug will melt and the contents of the core will be dropped into a containment tank fed by gravity. This is a precaution against the loss of coolant accident. One of the other advantages is reprocessing opportunity. It is possible with helium to remove volatile fission products from the reactor core. Tritium can be a problem but if the amount of tritium is below the critical level then it wouldn’t be a problem.

” Molten Salt Reactors are advantageous in many ways. The fuel is already melted, freeze plug is going to melt in case of an overheating issue, reproccessing is easier than the solid fuel. ”

FİGES took on the task of designing MSR’s heat exchangers in the SAMOFAR project and your designs were approved. Can you talk a bit about heat exchangers? What are the differences with a PWR exchanger? Why did it need to be redesigned?

There are a lot of differences between a PWR heat exchanger and an MSR heat exchanger. The basic difference is, that in a PWR heat exchanger steam is produced from water. MSR heat exchanger is working with molten salt to produce steam. FİGES finished calculations like the flow rate of the molten salt, the temperature of the molten salt, etc. for a heat exchanger of SAMOFAR. The heat exchanger is made of a material that is the same as the reactor core. In SAMOFAR, Hastelloy is used but boron carbide sheeting may be used for the heat exchanger.

Can you talk a little bit about your collaboration with Thorium Network?

The Founder of the Thorium Network Jeremiah has contacted FİGES about 5 months ago. We met him in one of the FİGES offices which are located in İstanbul. We have discussed what we have done in Turkey thus far. We signed an agreement about sharing networks. We share the thorium and molten salt reactor-based projects with them and they do the same.

If the idea of building an MSR in Turkey is accepted, where will FİGES take part in this project?

As FİGES, building an MSR in Turkey has two steps. The first step is about design. To design a reactor you need software. The existing codes are for solid fuel. First of all the codes that are going to be used for liquid fuel must be developed. There are companies that work to develop required software all around the world. We want to take part in the design step as FİGES. After the design is finished the second step comes. The second step is building the reactor. FİGES doesn’t have the base to build a reactor but an agreement can be made with companies that can build a nuclear power plant.

Do you have any advice you can give to nuclear power engineer candidates who want to work on MSR? What can students do about it?

There are tons of documents about Molten Salt Reactor Technology. These documents are about the material of the reactor core, software codes, design, etc. A student can find everything about MSR on the internet. In addition to this, students should follow the Denmark-based company that is called “Seaborg“. They have a compact molten salt reactor design. Also, there is another MSR design called “ThorCon“. Students can follow the articles, presentations, and events about these two MSR designs. As I said, students must research and follow the literature about Molten Salt Fission Technology.

. . .

It was a great opportunity for me to meet Mr. Reşat who has been working to develop nuclear energy in Turkey. I would like to thank him for his time and great answers.

As students, we are going to change the world step by step with Molten Salt Fission Technology by our side. We are going to continue doing interviews with key people in nuclear energy and MSR!

The Student Guild of the Thorium Network


LINKS AND REFERENCES:

  1. Dr. Reşat Uzmen on Linkedin
  2. Rana on Linkedin
  3. The interview on Youtube
  4. Figes AS
  5. SAMOFAR
  6. Atoms for Peace
  7. Interview #2, Mr. Emre Kiraç “Leading to Nuclear”
  8. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  9. The Thorium Student Guild

#ThoriumStudentGuild #LeadingToNuclear #Interview #ResatUzmen #Figes #Turkey

Interview #2, Mr. Emre Kiraç of Kiraç Group. Part of the Student Guild Interview Series, “Leading to Nuclear”

Kirac Montage

Under favour of The Thorium Network, I met a successful and farsighted person. The person who caught my attention with his works and ideas in various fields is Emre Kıraç, CEO of Kıraç Group. If we talk about him briefly, Mr. Emre received his bachelor’s degree in electrical engineering from Istanbul Technical University. After completing his master’s degree in Entrepreneurial Management at London EBS (European Business School), he still works as the general manager of Kıraç Group companies operating in the fields of energy, transportation and health. If I were to talk about Mr. Emre for myself, I can say that he is open to new ideas and a model to young entrepreneurs with his success in many sectors he has entered. As a nuclear engineer, the thing that draws my attention the most is his innovative views, support and work in the field of energy. The reason why I say so is that, as we know, the need for energy is increasing day by day due to the increasing population and other factors. There are many different methods to supply with the energy need. One of them is nuclear energy. We see that Mr. Emre closely follows and supports the developments in the nuclear field.

Without further ado, you can see what we asked in our interview. Good reading!

Rana,
President of the Student Guild
The Thorium Network


Leading to Nuclear Interview Series, Interview #2, Engineer Emre Kiraç of Kiraç Group, Turkey

Can you tell us about the development of Kıraç Group? Since 1982, your company has continued to grow. What is your biggest source of motivation?

Our company’s history and the fact that we have earned people’s confidence in the workplace. Moreover, one of our major sources of motivation is to ensure and improve the continuation of our businesses. 

In which areas and specifically on which subjects does Kıraç Group focus on R&D studies?

In particular, we have four companies engaged in R&D work. These companies develop their own products. Kıraç Metal is working on solar energy systems, Kıraç Galvaniz is working on highway protection systems, Kıraç Bilişim is working on hospital automation, and Kıraç HTS is working on aviation.

You’ve worked in the energy business for a long time and have a lot of experience in it. I’d want to hear your own thoughts on nuclear energy and reactors.

Nuclear energy, in my opinion as an electrical engineer, is a healthy and safe source of energy. Of course, if it’s done correctly. There have unfortunately been awful examples of this in the past. Unfortunately, many associate nuclear energy with nuclear weapons, and as a result, they are biased towards this sort of energy. But, with smart design and hard effort, I’m confident that many people will see nuclear power as clean and safe.

As Kıraç Group, you give importance to green energy. You have studies and activities on solar energy and wind energy. The world also needs nuclear energy and we cannot stop climate change with wind and solar energy alone. What do you think about Turkey’s adventure in the field of nuclear energy? What changes will happen after that?

As we know, Akkuyu nuclear power plant installation has started. Of course, our country does not have any nuclear technology. In fact, nuclear technology is a technology that has been on the world agenda since the 1940s. Although Turkey has technology in many fields, unfortunately it has not had any technology in the nuclear field. Therefore, our country should develop itself in the global conjuncture.

Do you find Turkey’s studies on renewable energy sufficient? What do you think should be done more?

The main country that creates the economy of renewable energy is Germany. In this sector, we continue our work in Germany. Although this country is less efficient in terms of solar energy compared to other countries, it has many more solar power plants. In Turkey, on the other hand, solar power plants will definitely become more widespread. We are also in this business. Turkey is a complete renewable energy country in terms of both wind and solar energy. We also closely follow the hydrogen-based energy technology. Renewable energy should become more widespread in our country. Our country is very clear in this regard. The important thing is to increase the incentives of the state to this sector.

What are your thoughts on molten salt reactors? Can a molten salt reactor be established in Turkey after the VVER 1200 (PWR) to be established in Akkuyu and can it be produced entirely with national resources?

I got detailed information on this subject. The implementation of this technology would be incredibly good for Turkey. Since Turkey is rich in thorium reserves, this technology carries our country much further in the nuclear field. But for this technology to be applicable, R&D studies are needed. I think this will be possible with the efforts of our state and universities.

Can you tell us about your cooperation with Thorium Network? What prompted you to make this collaboration? What was the most influential factor for you?

First of all, since we are in the energy sector, Thorium Network attracted our attention. We have an old friendship with Mr. Jeremiah. I am interested in Jeremiah’s blogs and I follow them. After he came to Turkey, I had the opportunity to get to know him better. In addition to these, I feel responsible for this issue as Eskişehir has thorium deposits. I want to promote and develop Thorium Network in this environment. This is my biggest goal right now.

What kind of work can be done to spread the idea of nuclear energy in Turkey?

We need to lobby on this issue. People like you and us need to understand this technology very well and explain it to other people. We are just at the beginning of the road. Firstly, the Molten Salt Reactor technology needs to be developed. The more R&D studies we do on this subject, the more positive returns will be.

Turkey wants to design and install a molten salt reactor with completely domestic and national resources. Especially the Turkish Energy, Nuclear and Mining Research Institute (TENMAK) is very enthusiastic about this issue. Do you think TENMAK and universities alone will be enough for R&D studies or do we need other organizations?

We need an international communication on this issue. There may also be a need for the private sector, but we do not have many companies that have worked in the nuclear field. Together we can research and develop. Apart from these, it is important for the state to support, technical and commercial reports should be prepared and funds should be allocated. Then an international partner can be found and brought to better places.

When I examined your company, the years you entered new sectors caught my attention. You identify the needs very clearly and produce solutions in the most effective way. What do you pay attention to when entering a new industry? In your opinion, if the first molten salt reactor were to be successfully established in our country, where would Kıraç Group be in this process? (Part production, liquid fuel production, construction, electricity etc.)

The nuclear industry is a very large and complex field. We have thousands of products, of course, we can meet some of them in the future. But it’s too early to talk about that. We will cooperate with Thorium Network on this issue. There is also a large thorium reserve and precious metals in Eskişehir. These mines are currently being sold. It would be much better if we were in a position to add value to these mines. We continue our research on this subject.


We had a great time during the interview. We’d like to show our thanks to Mr. Emre for the information he gave and for his participation. 

You may also stay updated on developments by visiting our website and joining our student guild.

Thorium Network Student Guild continues to inspire people all around the world. Come and join our team! You can find the Student Guild application on this page:

The Student Guild of The Thorium Network

Links and References

  1. Emre Kirac on LinkedIn
  2. Rana on LinkedIn
  3. The interview on YouTube
  4. Kirac Group
  5. Interview #1, Akira Tokuhiro, “Leading to Nuclear”
  6. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  7. The Student Guild

#StudentGuild #LeadingToNuclear #Interview #EmreKirac #KiracGroup

Interview #1, Prof. Akira Tokuhiro of Ontario Tech University. Part of the Student Guild Interview Series, “Leading to Nuclear”

Bruce Power - A Nuclear Generating Station

World’s first reactor was built in 1942 in Chicago by Enrico Fermi and his team. Since then several hundred nuclear reactors were built, shut downed and rebuilt. For the future, six types of Generation 4 fission machines wait to be born. The world needs the energy to develop and maintain life but above all these reasons there is an essential one: going to Mars and supplying all energy that is needed for life. That’s my priority motivation and purpose for choosing the nuclear area to work. History tells us that “never forget to take lessons from past” and future tells us that “enlighten your ways from your mistakes”. The nuclear accidents that happened in the past led us to Gen 4 designs. As students, we are the ones who determine the nuclear reactor’s destiny. One of the Gen 4 designs is Molten Salt Reactor. We are trying to understand what can we do to design and build a molten salt reactor. We do this by interviewing nuclear experts, engineers all over the world. Come and join our story!

Stagg Field, Chicago Pile 1
Enrico Fermi
Molten Salt Fission Energy Technology

The Student Guild’s first interview was with Professor Akira Tokuhiro. He recently stepped down as the Dean of the Faculty of Energy Systems and Nuclear Science at Ontario Tech University in Canada. Also, he was in the American Nuclear Society’s President’s Committee on the 2011 Fukushima Daiichi nuclear power plant accident in Japan. He is an international nuclear energy expert.

Rana
President of the Student Guild
The Thorium Network


Interview 001, Prof Akira Tokuhiro of Ontario Tech University – Leading to Nuclear Interview Series

What does nuclear energy expert do?

We do many things. We design Generation 4 (IV) systems. We look at the safety issues of current reactors and reactors that will be constructed. We are always looking for continuous safety improvements. We have 4 questions to be answered about safety and accidents, “what can happen, how often can it happen, how does it happen and what are the consequences?”. We ask these questions and we do the engineering design, safety analysis for that. Now nuclear engineering requires computer programming and engineering analysis. Applications of virtual reality, augmented reality, new applications of artificial intelligence, and machine learning will be used by new nuclear engineers to design and operate reactors.

In one of your interviews, you said “Nuclear reactors are challenging, that’s why I choose the nuclear energy area to work”. What is the most complex and challenging thing in the nuclear area or reactor physics?

For me, the most interesting and challenging thing is you have to know many things. You may find the solution for a small area but nuclear power plant is many different things. If you find a solution for a small area, it may impact other things. That’s why you have to look at many different things and you have to integrate them. That’s challenging for me. That integration that I teach to my students. How do you design a reactor? You design from the reactor core and then outward from the core.

What are the most common safety design features for Gen 4 that at the same time can be used for Gen 3 or Gen 2 reactor safety designs?

We have learned from Generation 2, 3 and 3+ about human factors engineering. There are two things about human beings, one is human beings are unreliable, other is unpredictable. When you apply these to safety systems, you want to design the reactor that minimizes probability for human error. Gen 4 and small modular reactors are designed so that cooling is assured, and do not rely on human operators because they can make mistakes under pressure. You have to design the reactor so that after shutdown decay heat can be removed without human intervention.

What is the biggest problem about safety that must be redesigned immediately now? For example, for PWR Generation 2 designs, what is the biggest safety problem about that reactor, and how can it be redesigned?

My opinion is reactor is designed so that it can shut down when a postulated event occurs. Even if an earthquake happens, the reactor can shut down like the reactors are located at Fukushima. The reactor was shut down after the earthquake. To remove the decay heat that’s remaining, pumps may be required to facilitate cooling for the first 72 hours. After two weeks the decay heat has to be much less. That has to change in all plants. Cooling after shut down is possible, we can do that but we have to make sure that even if we have a terrible earthquake, sufficient cooling has to remove thermal energy from the core. In SMR’s we don’t need pumps, like large reactors; when you have a pump, you also need a source of water in order to maintain cooling to take the heat. The safety problem of Gen 2 and Gen 3 designs is to prevent the meltdown of the core.

“By 2030 or 2035 Gen 4 large reactors or small modular reactors will be built by Russia or China.”

When do you think the first Gen 4 reactor will be built and where will it be built and which design will be built?

I think by 2030 or 2035 some Gen 4 reactors will be built. It may be Gen 4 large reactors but it is also possible that small modular reactor may be built too. It depends on the country. Russia and China have their designs and they are being constructed. It is difficult to call them Gen 4 but recent VVER is an improved design. China is building different kinds of reactors and operating them. So by 2030 or 2035 Gen 4 large reactors or small modular reactors will be built by Russia or China. In the west, new reactors very much depends on investment. For example, in North America before 2035 there will be a small modular reactor constructed and ready to operate as well.

What are your thoughts about thorium molten salt reactors?

Thorium Molten Salt reactors combine interesting reactor design with a fresh look at a new type of fuel. In the least next 3-5 years, we need much more engineering to finish the design and to get the regulatory approval of the completed design. Since my background is from the US, I am familiar with US Nuclear Regulatory Commission and they will importantly ask safety questions about design basis accidents. If you don’t have a pump, as part of the design natural convection cools the reactor so it may be a preferred design. Molten salt reactors are an interesting design and thorium is a different type of fuel. Perhaps by analogy, the nuclear industry is very similar to a restaurant or the automotive sector. You have to have customers and people come to eat at a restaurant. You have to make a popular automobile and people have to trust the safety and they are buying the safety in design that comes with it. Thorium Molten Salt design has to be finished and the design has to convince the regulator that it is a sufficiently safe design and that is constructed.

You are an expert on nuclear safety. Do you think passive safety systems designed for molten salt reactors are sufficient? Are there any other passive systems projects running? Can you please give us the details?

The molten salt reactor concept came from the 1950s and 1960s. Modernized design of the MSR started with Oak Ridge Molten Salt Reactor. (MSRE) They operated a research and demonstration reactor for a few years so fifty years later we are updating this design. I think the concept is solid but needs details; safety cases are convincing. If you have the money and engineers the first step to building a reactor is making a research and demonstration reactor to show that the reactor is very safe. For example, in molten salt reactors, fuel flows in a tank by gravity when an unanticipated event occurs. That is when a PS may be needed. So this means no operator, no human error.

“We need more nuclear power plants because we need a quick transition to a lower CO2 economy or scale.”

About thorium molten salt reactors, what can students do?

Now in the last five years, I think it is very important for students to find friends all over the world and to be interested in solving the challenges posed by climate change. We need to reach net-zero as quickly as possible: even before 2050. I think we have to make progress every five years or it will become very difficult to meet our net-zero carbon economy. We have to make as much progress by 2030. By 2050 we have to make substantial progress or net-zero carbon economy. If we don’t have any progress by 2030 reaching a net-zero carbon economy becomes increasingly difficult. Now we have the power of social media. Students have to ask many questions to old people like me about safety, design. We have to change and seek from the regulator, approval of the new reactors designs. We have a lot of experts from many countries. We already have about 440 nuclear power plants in the world but we need as many as ten times as many reactors to tackle climate change. We need more nuclear power plants because we need a quick transition to a lower CO2 economy or scale. It is not the ultimate solution for climate change but it is a solution that we have now. Young people can become involved through social media and by asking good questions. We need to convince people that by combining nuclear energy, wind, and solar we can reach a net-zero carbon economy. We need nuclear power, it may be risky, but risk and fear are a spectrum. If you think the benefit is greater than the risk then you would do it. People are usually afraid when they don’t understand the risk so they think the risk is very big and the benefit is not so big.

How did you decide to join the Thorium Network? What was the most attractive thing that impressed you about Thorium Network?

I contacted one of the founders Jeremiah Josey. I thought the thorium molten salt reactor is interesting and thorium is an alternative to uranium. It is a network. This network includes many people all around the world. That’s why I joined. The network is a new way to design a reactor.


I had a great time while talking with Professor Tokuhiro. I would like to thank him for his time and perfect answers.

Thorium Network Student Guild continues to inspire people all around the world. Come and join our team! You can find the Student Guild application on this page:

The Student Guild of The Thorium Network


Links and References

  1. Professor Akira Tokuhio on LinkedIn
  2. Rana on Linkedin
  3. The interview on YouTube
  4. Ontario Technical University
  5. Generation IV Fission Technology
  6. Chicago Pile 1
  7. ANS Committee Report: Fukushima Diiachi
  8. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  9. The Thorium Student Guild

#ThoriumStudentGuild #LeadingToNuclear #Interview #AkiraTokuhiro #OTU

Launching the Student Guild Interview Series, “Leading to Nuclear”

Nuclear Power Station

We live in a finite world. Our world has a limited time until its end. There are 7.753 billion people who are trying to survive every day out there. Climate change is real and our world continues to warm. If we don’t do something about climate change, we will never live in the same world that we used to live in. Our lives might change completely. We are responsible for all the actions that we have done to the world and nature. So it is time to correct our mistakes and take the action! 

Bill Gates

“Nuclear energy, in terms of an overall safety record, is better than other energy.” 

Bill Gates

We all know that wind and solar are not enough to stop climate change. We need a combination of nuclear, solar, and wind because nuclear energy has zero carbon emissions. That’s what we need! Do your research, ask what you want to ask at the end of the day you will see that nuclear is the only answer. Now we have an even better option which is Molten Salt Fission Energy Technology. It is safe, reachable but needs committed research and development programs worldwide. We need to convince the world that now nuclear power is safer than ever.

Students have the power of changing minds, creating new ideas, and supporting each other. At this point we are going to do all the things that we can do since still we have time. We are going to interview nuclear engineers, nuclear energy experts, and people who are interested in nuclear power to learn how we can reach a net-zero carbon economy with nuclear power. Also, we are going to learn how Molten Salt Fission Energy Technology can be accepted by regulators and what can we do about Thorium-based fuel. We are going to publish blogs about every interview. We interview people as much as we can. This way we will create a new era about Molten Salt Fission Energy Technology and Thorium fuel. It is a long journey but hopefully, at the end of it, we will have smiles on our faces with champagnes in our hands. 

Our first interview is with Professor Akira Tokuhiro of Canada. He recently stepped down as the Dean of the Faculty of Energy Systems and Nuclear Science at Ontario Tech University in Canada. Also, he was in the American Nuclear Society’s President’s Committee on the 2011 Fukushima Daiichi nuclear power plant accident in Japan. As international nuclear energy expert readers of this interview will gain a rare insight few will experience in their lifetime.

Prof. Akira Tokuhiro

Our interview with Professor Tokuhiro will be one of many coming over the next several months as we bring you key insights on an industry rarely discussed outside.

Rana,
President
The Student Guild


Thorium Network Student Guild continues to inspire people all around the world. Come and join our team! You can find the Student Guild member application on this page:

The Student Guild of The Thorium Network

Links and References

1. Leading to Nuclear, Interview #1, Prof. Akira Tokurio, Ontario Technical University, Canada
2. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
3. The Student Guild
4. Rana on Linkedin

#StudentGuild #LeadingToNuclear #Interview #MoltenSaltFissionEnergy #Thorium