A Crib Sheet for Journalists and Students of Thorium

Thorium Periodic Table

Are you a journalist – or a student – looking for the inside on Molten Salt Fission Energy powered by Thorium? Well this page is for you.

We’ve been asked many times for a summary of resources or key people to speak with.

Are we biased? Of course we are. Read on and you’ll know why. You’ll probably want to Join Us too.


A Future Powered by Thorium is our objective. We are leveraging the billions of USD in today’s value and millions of hours invested over 50 years ago in a technology that is demonstrably superior to anything else we have today.

Here’s a summary of that work from Oak Ridge National Laboratories:

The Molten-Salt Reactor Experiment

We have this YouTube and other useful 3rd party links on our website here:

The Thorium Knowledge Base

See this chart of energy density from an Australian government website. Everything else pales into insignificance when compared to MSR (Molten Salt Reactors)

Here’s a recent article from Germany we translated into Japanese. It contains a lot of information on China’s progress also. China is replicating the 1960’s USA program, publicly announcing 2011 investing USD 3,3 billion and 700 engineers for the work. This is not about reinventing the wheel, it’s just remembering what we’ve done before. Remember also China and Australia worked together to create a replacement for the super alloy metal “Hastelloy”. This super metal was created in the 1950’s in the USA for their advanced nuclear programs and is only made today by two companies in the world – one in the USA and Mitsubishi. Now China has an alternative.

The article also includes information on Japan’s molten salt project –  FUJI.

Here’s a list of must-do-interviews for background on Thorium Molten Salt Fission Energy or subjects related, such as radiation safety, the effects of Chernobyl and Linear No Threshold theory.

Professor Geraldine Thomas
Director of the Chernobyl Tissue Bank, the world’s preeminent knowledge base for all things related to the real effects of that industrial accident. Prof. Thomas is became staunchly pro-nuclear due to her directorship. George Monbiot – a former Greenpeace anti-nuc activist, and now no longer in Greenpeace and strongly pro nuclear – after an interview he also had with Prof Thomas he had as a writer for the UK’s Guardian. 

George Monbiot on Wikipedia

Geraldine Thomas on Wikipedia

Chernobyl Tissue Bank

Mr. Daniel Roderick
Former President and CEO of Westinghouse and then Toshiba Energy Systems. Danny steered the sale of  Westinghouse for Toshiba, securing a positive, multi billion USD outcome for Japan. Danny was also the leader of negotiations to secure USD 50 billion in funding for a new nuclear build in Turkey (derailed by the 2016 coup attempt in Turkey). Mitsubishi subsequently submitted (and withdrew)  a nuclear build in Northern Turkey (Sinop). Rosatom (Russia) is now building a nuclear power station in the south of Turkey (Akkuyu).

Dr. Adi Paterson
Dr. Paterson is the former head of ANSTO and an advocate of Molten Salt Technology. During his 9 year tenure at ANSTO, Dr. Paterson steered Australia to membership of the Generation IV forum, kind of the United Nationals for advanced reactor designs. This is no mean feat given Australia’s lack of much to do with nuclear energy. 

Generation IV Forum

Dr. Resat Uzman
Director of nuclear energy systems at Figes AS, of Turkey. Dr. Uzman has more than 40 years experience in all things nuclear, Turkey and rare earths – the materials where Thorium is often found bound with.

Professor Berrin Erbay
Senior lecturer and former dean of mechanical engineering at Osmangazi University, Turkey Prof. Erbay has been liaising with the professors in Japan for several decades. You can see one of her presentations on the status of molten salt technology in Japan here on Youtube: 

4. Nesil Nükleer Reaktör Teknolojileri Toplantısı

Mr. Phumzile Tshelane
Mr. Tshelane is a former CEO of NECSA South Africa, now holds various directorships across a wide range of industrial sectors. His position as head of a state owned nuclear technology development company gives him a particular view point on commercialisation of nuclear energy technologies.

S3E6 Africa4Nuclear: The Story of Thorium

Ms. Rana Önem
President of the Thorium Student Guild. You should hear from someone who is dedicating their life to Thorium Molten Salt and who is just starting out in their career. You can see Rana interviewing Dr. Uzman here. Follow the links at the end of the article to see her role as president of the Guild: 


An important subject to cover is linear no threshold theory – a fraudulent model of radiation management that, unfortunately, has spawned an industry of radiation protection and radiation safety keen on maintaining its own survival. This results in massive, unnecessary overspending on nuclear builds. Professor Edward Calabrese is a leading expert on this subject and you can watch a series of interviews with Ed here: 

The History of the Linear No-Threshold (LNT) Model Episode Guide

Together with Professor Jerry Cuttler, Ed presents clearly, laying out how LNT has demonstrably been proven false. (And consequently those that died at Fukushima died unnecessarily, as a direct result of inappropriately applying that theory).

What would become of nuclear risk if governments changed their regulations to recognize the evidence of radiation’s beneficial health effects for exposures that are below the thresholds for detrimental effects?

Here’s the background on the Turkey Japan University (TJU). Our CEOs meeting with the Japanese Ambassador to Turkey in 2021 confirmed Japanese support for technology development of Molten Salt is easier should such work be included in the curriculum of the TJU.  Early planning stages of the TJU can be seen here below. The vice president of TJU is a senior professor at the Tokyo University responsible for nuclear engineering.

The “only” obstacle to adoption of Molten Salt Fission Energy powered by Thorium is the incumbent energy industries. It’s a significant obstacle, and it would be naive to think otherwise. Operating much like the tobacco industry has done in the past, lobbyists and funding at all levels occurs to stymie any potential competitors.

It is predicted that the 7 Trillion USD per year fossil fuel energy market would shrink to only 1 Trillion per year with a society powered by Thorium. This is an obvious disincentive for incumbents to do anything but to obfuscate and delay.

You can see that obfuscation at work here with both Wired and the Bulletin in 2019 on USA presidential candidate Andrew Yang:

Fact-check: Five claims about thorium made by Andrew Yang – Bulletin


Andrew Yang Wants a Thorium Reactor by 2027. Good Luck, Buddy – Wired

The half truths and lies are difficult, if not impossible, for the layperson to identify. We contacted one of Andrew’s advisory team members and confirmed Andrew supports Thorium Molten Salt, and was committing several billion USD to have USA’s energy footprint 100% on the technology by 2030. Technically very doable. Politically, not.

It is important to recognise the ecological and economic footprint of energy from Thorium (a substance as common as lead) as being much smaller than even Uranium. In the article link above (the Japanese translation one) there are three slides that demonstrate the significant benefits Thorium has over Uranium.  These slides are repeated below.

Thorium and Uranium Compared Slide 1 of 3
Thorium and Uranium Compared Slide 1 of 3
Thorium and Uranium Compared Slide 2 of 3
Thorium and Uranium Compared Slide 2 of 3
Thorium and Uranium Compared Slide 3 of 3
Thorium and Uranium Compared Slide 3 of 3

The IAEA report TE1450 from 2005 is an excellent read. It says Thorium is not an issue and is a good prospect for energy – back in 2005. Once the physics is proven it doesn’t need to be “upgraded” every 6 months like an iPhone.

And yes, Thorium doesn’t explode. “Walk away safe” is a suitable term for Molten Salt Technology.

Here’s the former head of IAEA, Hans Blix, stating that “Thorium shouldn’t be treated like uranium”. 

Thorium Nuclear Power and non Proliferation Hans Blix IAEA ThEC13

See more Hans Blix on Thorium Molten Salt Fission Energy

Attached below is a brief summary of “Why Thorium didn’t take off” by Bruce Hoglund, 5 November 2010. It’s an excellent starting point for data gathering and research – and not “Wikipedia”. Wikipedia was used as partial evidence why the United Kingdom should’t use Thorium for energy. Some 10 years ago in a UK government 1.5m GBP funded “study”, rubbished Thorium and directly contradicted the advice of the IAEA’s TE1450 report.


The information here is but the tip of the iceberg, however it gives an excellent starting point. There are of course, many, many others who can contribute considerably for a balanced and objective article or articles on Thorium for our energy future. And with today’s communications technology, such conversations are only but a few key strokes away.

Burning stuff is old tech. Star Trek technology is where we have to be now. Fission does that, especially Molten Salt Fission Energy powered by Thorium


Links and References

  1. https://thethoriumnetwork.com/join-us/
  2. https://www.youtube.com/watch?v=tyDbq5HRs0o
  3. https://thethoriumnetwork.com/about-thorium/thorium-knowledge-base/
  4. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
  5. https://thethoriumnetwork.com/2022/05/03/%e3%83%91%e3%83%bc%e3%83%95%e3%82%a7%e3%82%af%e3%83%88%e3%83%86%e3%82%af%e3%83%8e%e3%83%ad%e3%82%b8%e3%83%bc-%e3%83%90%e3%82%a4%e3%83%aa%e3%83%b3%e3%82%ac%e3%83%ab%e8%a8%98%e4%ba%8b-%e6%97%a5%e6%9c%ac/
  6. https://en.wikipedia.org/wiki/Geraldine_Thomas
  7. https://en.wikipedia.org/wiki/George_Monbiot
  8. https://www.chernobyltissuebank.com/contact-us
  9. https://www.linkedin.com/in/danielroderick/
  10. https://www.linkedin.com/in/adi-paterson/
  11. https://www.gen-4.org/
  12. https://figes.com.tr/en/home
  13. https://www.linkedin.com/in/resat-uzmen-051a824/
  14. https://thethoriumnetwork.com/2022/05/17/interview-3-dr-resat-uzmen-nuclear-technology-director-of-figes-part-of-the-thorium-student-guild-interview-series-leading-to-nuclear/
  15. https://www.youtube.com/watch?v=NEDK_MAWQD0
  16. https://www.linkedin.com/in/l-berrin-erbay-61b04745/
  17. https://www.linkedin.com/in/phumzile-tshelane-3014945a/
  18. https://www.necsa.co.za/
  19. https://www.youtube.com/watch?v=6MsgDx8K-t4
  20. https://www.linkedin.com/in/rana-%C3%B6nem-57a14718b/
  21. https://thethoriumnetwork.com/join-us/student-guild/
  22. https://www.linkedin.com/in/ed-calabrese-697a1119/
  23. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
  24. https://hps.org/hpspublications/historylnt/episodeguide.html
  25. https://www.linkedin.com/in/jerry-cuttler-26106763/
  26. https://www.linkedin.com/posts/jerry-cuttler-26106763_what-would-become-of-nuclear-risk-if-governments-activity-6870517584475824128-qr3W
  27. https://www.youtube.com/watch?v=eJSeQIW-X44
  28. https://thebulletin.org/2019/12/fact-check-five-claims-about-thorium-made-by-andrew-yang/
  29. https://www.wired.com/story/andrew-yang-wants-a-thorium-reactor-by-2027-good-luck-buddy/
  30. https://www.youtube.com/watch?v=F4m10Y0rWBY
  31. https://www.youtube.com/results?search_query=hans+blix+thorium
  32. https://www.linkedin.com/in/bruce-hoglund-52194814/

#Journalist #CribSheet #Thorium #Interviews #MoltenSaltFissionEnergy #Rosatom #Japan #Turkey #China #LNT

Interview #3, Dr. Reşat Uzmen, Nuclear Technology Director of FİGES. Part of the Thorium Student Guild Interview Series, “Leading to Nuclear”

Integrated Industrial Zone Powered by Molten Salt courtesy of Figes of Turkey
Dr. Reşat Uzmen

Since the 1960’s Turkey were trying to get involved with nuclear energy. Turkey was one of the countries that participated in the International Conference on the Peaceful Uses of Atomic Energy, held in Geneva in 1955 September. There is no doubt that Turkey wants to use nuclear energy for energy production. In Turkey, there are many experts that have knowledge about nuclear fission technology. Dr. Reşat Uzmen is one of the most important people who is experienced in the nuclear fuel area. During the interview, his ideas and visions enlighten us about the future of Molten Salt Fission Technology. Here is another instructive interview for building a MSR!

The Atoms for Peace symbol was placed over the door to the American swimming pool reactor building during the 1955 International Conference on the Peaceful Uses of Atomic Energy in Geneva, often called the Atoms for Peace conference.

Rana
President of the Student Guild
The Thorium Network

Leading to Nuclear Interview Series, Interview #3, Dr Resat Uzmen of Figes Turkey

Mr. Reşat, can you tell us a little about yourself?

I graduated from İstanbul Technical University (İTU) in the chemical engineering department. I did my master’s degree in İTU also. As soon as I finished the department I became a researcher in The Çekmece Nuclear Research and Training Center, known as ÇNAEM. My research was about how uranium could be treated to obtain an uranium concentrate. I did my doctor’s degree in that topic. Back then, it was so hard to get information because it is a delicate technology. That’s why we did the research by ourselves. Think about that: there was no internet! There was a library in ÇNAEM, it still remains there. All the reports that were collected from all over the world were kept here. We benefit from those reports that were about uranium and thorium. In addition, getting chemicals was difficult. The ores that we were working on were coming from Manisa so mine was tough to process. Despite all these obstacles Turkey needed uranium so we have done what has to be done. I am the founder of “the nuclear fuel technology department in ÇNAEM”. This department was focused on producing uranium fuel that could be ready for fuelling and we did it. We produced uranium pellets by ourselves in our laboratories. We did research about ore sorting of thorium and how it can be used in nuclear reactors. Now I am working as a nuclear technology director at FİGES.

Dr. Reşat Uzmen, Thorium NTE Field in Burdur Turkey

“Turkey is capable of designing its own reactor now!”

Dr. Reşat Uzmen

What are your thoughts on Turkey’s nuclear energy adventure? Although nuclear engineering education has been given at Hacettepe University since 1982, Turkey has never been able to gain an advantage in nuclear energy. What could be the main reasons for this?

Nuclear energy needs government support and government incentive. Government policy must include nuclear energy. In Turkey, nuclear energy was too personal. A government is formed then a team becomes the charge of the Turkey Atomic Energy Agency and this team is working hard, trying to encourage people about nuclear energy but then the new government is formed and the team is changed. Unfortunately, this is how it is done in Turkey. Also, you need money to build reactors. There were some countries that try to build a nuclear reactor in Turkey. Once CANDUs was very popular in Turkey. Canadians supported us a lot. Argentineans came with CAREM design and wanted to develop the design with Turkey also they wanted to build CAREM in Turkey, it was a great offer but the politicians at that time were not open up to this idea. Nuclear energy must be government policy and it should not be changed by different governments.

As you know, there is a PWR-type reactor under construction in cooperation with Rosatom and Akkuyu in our country. Do you think Turkey’s first reactor selection was the right choice?

This cooperation is not providing us any nuclear technology. When The Akkuyu Nuclear Power Plant is finished we will have a nuclear reactor that is operating in Turkey but we can not get any nuclear technology transformation. Right now Turkey can not construct the sensitive components of a nuclear reactor. Akkuyu is like a system that produces energy for Turkey. It would be the same thing if Russia build that plant in a place that is near Turkey. In addition, there is the fate of spent fuels. Russia takes away all the spent fuels, these spent fuels can be removed from Turkey in two ways: by water, starting from the Akkuyu harbor, the ship will pass through the Turkish straits, then pass to the Black Sea and pass through the Novorossiysk harbor to reach Siberia and by land, from Akkuyu it will arrive in Samsun or Trabzon then by water the ship will arrive in Siberia. I suppose spent fuels are going to be transported by water.

What are your thoughts on molten salt reactors?

Molten Salt Reactor is a Gen. 4 reactor and has a lot of advantages. First of all, the fuel of the MSR is molten salt so it is a liquid fuel. Since I am interested in the fuel production part of nuclear energy I am aware of the challenges of solid fuel production. Having liquid fuel is a big virtue. Liquid fuel can be ThF4-UF4. The fuel production step can proceed as: UF4 may be imported as enriched uranium. If you have the technology then UF₆ may be imported as enriched uranium then UF₆ can be converted to UF4. After that step fabrication of the liquid fuel is easier than solid fuel. Second, MSR has a lot of developments in the safety systems of a nuclear reactor. There is no fuel melting danger because it is already melted. The liquid fuel is approximately 700 °C. The important point is molten salt may freeze. If fuel temperature is below approximately 550°C the fuel becomes solid we don’t want that to happen. Also, the fuel has a negative temperature coefficient which means that as the temperature of the fuel rises reactivity of the fuel is going to decrease. There is a freeze plug at the bottom of the core. If the core overheats the freeze plug will melt and the contents of the core will be dropped into a containment tank fed by gravity. This is a precaution against the loss of coolant accident. One of the other advantages is reprocessing opportunity. It is possible with helium to remove volatile fission products from the reactor core. Tritium can be a problem but if the amount of tritium is below the critical level then it wouldn’t be a problem.

” Molten Salt Reactors are advantageous in many ways. The fuel is already melted, freeze plug is going to melt in case of an overheating issue, reproccessing is easier than the solid fuel. ”

FİGES took on the task of designing MSR’s heat exchangers in the SAMOFAR project and your designs were approved. Can you talk a bit about heat exchangers? What are the differences with a PWR exchanger? Why did it need to be redesigned?

There are a lot of differences between a PWR heat exchanger and an MSR heat exchanger. The basic difference is, that in a PWR heat exchanger steam is produced from water. MSR heat exchanger is working with molten salt to produce steam. FİGES finished calculations like the flow rate of the molten salt, the temperature of the molten salt, etc. for a heat exchanger of SAMOFAR. The heat exchanger is made of a material that is the same as the reactor core. In SAMOFAR, Hastelloy is used but boron carbide sheeting may be used for the heat exchanger.

Can you talk a little bit about your collaboration with Thorium Network?

The Founder of the Thorium Network Jeremiah has contacted FİGES about 5 months ago. We met him in one of the FİGES offices which are located in İstanbul. We have discussed what we have done in Turkey thus far. We signed an agreement about sharing networks. We share the thorium and molten salt reactor-based projects with them and they do the same.

If the idea of building an MSR in Turkey is accepted, where will FİGES take part in this project?

As FİGES, building an MSR in Turkey has two steps. The first step is about design. To design a reactor you need software. The existing codes are for solid fuel. First of all the codes that are going to be used for liquid fuel must be developed. There are companies that work to develop required software all around the world. We want to take part in the design step as FİGES. After the design is finished the second step comes. The second step is building the reactor. FİGES doesn’t have the base to build a reactor but an agreement can be made with companies that can build a nuclear power plant.

Do you have any advice you can give to nuclear power engineer candidates who want to work on MSR? What can students do about it?

There are tons of documents about Molten Salt Reactor Technology. These documents are about the material of the reactor core, software codes, design, etc. A student can find everything about MSR on the internet. In addition to this, students should follow the Denmark-based company that is called “Seaborg“. They have a compact molten salt reactor design. Also, there is another MSR design called “ThorCon“. Students can follow the articles, presentations, and events about these two MSR designs. As I said, students must research and follow the literature about Molten Salt Fission Technology.

. . .

It was a great opportunity for me to meet Mr. Reşat who has been working to develop nuclear energy in Turkey. I would like to thank him for his time and great answers.

As students, we are going to change the world step by step with Molten Salt Fission Technology by our side. We are going to continue doing interviews with key people in nuclear energy and MSR!

The Student Guild of the Thorium Network


LINKS AND REFERENCES:

  1. Dr. Reşat Uzmen on Linkedin
  2. Rana on Linkedin
  3. The interview on Youtube
  4. Figes AS
  5. SAMOFAR
  6. Atoms for Peace
  7. Interview #2, Mr. Emre Kiraç “Leading to Nuclear”
  8. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  9. The Thorium Student Guild

#ThoriumStudentGuild #LeadingToNuclear #Interview #ResatUzmen #Figes #Turkey

「パーフェクトテクノロジー」-バイリンガル記事-日本語/英語 – “The Perfect Technology” – a Bilingual Article – Japanese / English

Full View of FUJI Molten Salt Reactor

この記事は、2022年3月14日にプロイセンの一般新聞Preußische Allgemeine Zeitungによって公開されました。著作権表示:教育目的でフェアユースを適用する。 / This article published 14 March 2022 by Preußische Allgemeine Zeitung, the Prussian General Newspaper. Copyright notice: applying fair use for educational purposes.

トリウムベースの溶融塩原子炉・液体燃料No.1 の責任:上海応用物理学研究所

Responsible for the Thorium-based Molten Salt Reactor-Liquid Fuel No. 1: The Shanghai Institute of Applied Physics

トリウム溶融塩原子炉

核燃料が溶融塩の形である原子炉は、多くの恩恵をもたらします。近い将来、中国で試験施設が稼働する予定です。

THORIUM MOLTEN SALT REACTORS Nuclear reactors in which the nuclear fuel is in the form of molten salt offer a wealth of advantages. A test plant will go into operation in China in the near future.

「パーフェクトテクノロジー」

原料は安価で世界中で入手可能であり、冷却水さえも必要ではなく、廃棄物は少なくなり、従来の核廃棄物よりもはるかに速く崩壊する

“Perfect technology”

The raw material is cheap and available worldwide, not even cooling water is needed and the waste is less and decays much faster than conventional nuclear waste: Thorium technology stands for a new quality of the use of nuclear energy

Wolfgang Kaufmann 23.01.2022

中国中部甘粛省の武威近くにある紅沙港工業団地では、パイロットプラントが間もなく稼働し、中国だけでなく世界中のエネルギー生産に革命を起こす可能性があります。 化石燃料の使用による二酸化炭素の排出、風力タービンの景観の劣化、環境に有害な生産による電池の大量使用、風や曇りのない天候での停電、リスクはありません。原子炉の事故による放射能の増加は、革新的なトリウムベースの溶融塩原子炉によって約束されています。 上海応用物理研究所のトリウムベースの溶融塩原子炉No.1(TMSR-LF1)は、原子力エネルギーの使用における新しい品質を表しており、それに「グリーンコート」を与えることになっています。

In the Hongshagang Industrial Park near Wuwei in the central Chinese province of Gansu, a pilot plant will go into operation in the near future, which has the potential to revolutionize energy production not only in the Middle Kingdom, but throughout the world. No more carbon dioxide emissions as a result of the use of fossil fuels, no more landscape degradation by wind turbines, no mass use of batteries from environmentally harmful production, no power outages in calm winds and clouds, but also no radiation risk due to reactor accidents, all this promises the innovative Thorium-based Molten Salt Reactor-Liquid Fuel No. 1 (TMSR-LF1) of the Shanghai Institute of Applied Physics, which advocates a new quality of use of the Nuclear energy is in place and this should give it a kind of “green coat of paint”.

Yoichiro Shimazu – FUJI Molten Salt Reactor [MSR] Passive Heat Removal System @ ThEC12

TMSR-LF1トリウム液体塩原子炉の機能は比較的簡単です。 弱放射性元素のトリウムは液体の塩に溶解し、中性子を照射します。 これにより、核分裂時に大量の熱を放出する同位体ウラン233が生成されます。 したがって、原子炉は独自の燃料を生成します。最終的に、このプロセスは、従来の原子炉の運転よりもはるかに安全であり(以下を参照)、他にも多くの利点があります。

The operation of the Thorium Molten Salt reactor TMSR-LF1 is relatively simple. The weakly radioactive element Thorium is dissolved in molten salt and bombarded with neutrons. This produces the isotope uranium 233, the fission of which releases large amounts of heat. So the reactor produces its own fuel. This process ultimately brings much more safety than the operation of classic nuclear reactors (see below) and also a variety of other advantages.

6つの恩恵

Six Benefits

まず、必要なトリウム232はごく少量です。 イタリアのノーベル物理学賞を受賞したカルロ・ルビアが計算したところ、1トンのトリウムのエネルギー含有量は200トンのウラン金属または2800万トンの石炭のエネルギー含有量に相当するためです。

First, only extremely small amounts of Thorium 232 are needed. The energy content of one ton of Thorium corresponds to that of 200 tons of uranium metal or 28 million tons of coal, as the Italian Nobel Laureate in Physics Carlo Rubbia calculated.

第二に、世界中に主要なトリウム鉱床があります。 原則として、この元素は鉛と同様の頻度で岩石地殻に発生し、希土類の採掘における廃棄物としても発生します。 それが高価ではない理由です。 一方で、最近、従来の原子力発電所の数が再び大幅に増加しているため、ウランの不足や価格の高騰が見込まれます。

Secondly, there are larger Thorium deposits all over the world. In principle, the element occurs in the rock crust as often as lead and is also produced as a waste product in the extraction of rare earths. That’s why it’s not expensive. On the other hand, there is a risk of shortages and price explosions for uranium in the future, because the number of conventional nuclear power plants has recently increased significantly again.

第三に、トリウム溶融塩反応器は、例えば砂漠地域を含む事実上どこにでも建設することができる。冷却水を必要としないからです。

Thirdly, a Thorium Molten Salt reactor can be built virtually anywhere, including desert regions, for example. Because it does not require any cooling water.

第四に、そのオペレーション(原典はドイツ語であるので、この場合ビトリーブとなりうるか)はまた、大幅に少ない放射性廃棄物を生成します。また、TMSR-LF1からの核廃棄物の99%以上は、遅くとも300年後には無害な同位体に崩壊したと言われています。さらに、より高度な溶融塩反応器で後でより長い放射材料の少量の残留量を処理し、したがって完全に中和することができる。比較すると、ウランを動力源とする従来の原子炉は、使用される核燃料のほんの一部しか使用されていないにもかかわらず、数千年の半減期を持つ長寿命の放射性核分裂生成物を生成します。

Fourthly, its operation also generates significantly less radioactive waste. In addition, more than 99 percent of the nuclear waste from the TMSR-LF1 is said to have decayed into harmless isotopes after 300 years at the latest. Furthermore, it is possible to process the small residual amounts of longer radiating material later in more advanced molten salt reactors and thus completely neutralise. By way of comparison, conventional nuclear reactors powered by uranium produce long-lived radioactive fission products with half-lives of many thousands of years, even though only a small fraction of the nuclear fuel used is used.

第五に、トリウム溶融塩炉の建設と運転のコストは、通常使用される軽水炉のコストよりも低い。これは主に、システムの動作圧力が低いため、多くの安全上の注意が不要であること、および燃料棒を調達する必要がないという事実によるものです。

Fifthly, the costs for the construction and operation of Thorium Molten Salt reactors are lower than those of the light-water reactors that are usually used. This is mainly due to the low operating pressure of the systems, which makes numerous safety precautions superfluous, as well as the fact that no fuel rods have to be procured.

第六に、TMSR-LF1のような原子炉は、ウラン233がインキュベートされるだけでなく、核医学などで必要とされる他の多くの放射性核分裂生成物も生成されるため、非常に経済的に運転することができます。そして、放射性核種のいくつかは、ルビジウム、ジルコニウム、モリブデン、ルテニウム、パラジウム、ネオジム、サマリウムなどの非常に求められている元素にさえ変わります。同様に、希ガスキセノンが放出され、とりわけ絶縁媒体として、またレーザーおよび航空宇宙技術において使用される。

Sixthly, reactors such as the TMSR-LF1 can also be operated extremely economically because not only uranium 233 is incubated in them, but also many other radioactive fission products are produced, which are required, for example, in nuclear medicine. And some of the radionuclides even turn into highly sought-after elements such as rubidium, zirconium, molybdenum, ruthenium, palladium, neodymium and samarium. Likewise, the noble gas xenon is released, which is used, among other things, as an insulation medium as well as in laser and aerospace technology.

戦争は万物の父

War is the father of all things

TMSR-LF1の基礎となる技術は、中国ではなく米国で発明されました。早くも1954年には、空軍は長距離爆撃機に動力を供給するために小型の溶融塩原子炉を実験しました。しかし、このプロジェクトは、米国が大陸間弾道ミサイルを保有していたときに急速に終了しました。同様に、1970年代初頭、ユーリッヒ原子力研究施設の西ドイツの科学者は、溶融塩炉に関するいくつかの研究を発表しましたが、当時の原子炉開発責任者ルドルフ・シュルテンの消極的な態度のために最終的に注目されませんでした。

The technology underlying the TMSR-LF1 was not invented in China, but in the USA. As early as 1954, the Air Force experimented with a small molten salt reactor to power long-range bombers. However, the project came to a rapid end when the United States had intercontinental ballistic missiles. Likewise, at the beginning of the 1970s, West German scientists from the Jülich nuclear research facility presented some studies on molten salt reactors, which ultimately received no attention because of the negative attitude of the then head of reactor development, Rudolf Schulten [main developer of the pebble bed reactor design, a non fluid fuel system].

代替原子炉の受け入れの欠如のもう一つの理由は、世界中の原子力産業の関心の絶対的な欠如でした。古典的な原子炉では、優れたお金を稼ぐことができ、燃料棒の生産からの収入なしには誰もやりたがらなかった。したがって、腐食のリスクが高いとされるものや、誰かが原子炉を誤用して兵器級の核分裂性物質を製造するという仮説的な危険性など、溶融塩反応器の使用に反対するあらゆる種類のふりをした議論が持ち込まれた。

Another reason for the lack of acceptance of the alternative reactor type was the absolute lack of interest of the nuclear industry around the world. With the classic nuclear reactors, excellent money could be earned, and no one wanted to do without the income from the production of fuel rods. Therefore, all sorts of pretended arguments against the use of molten salt reactors were brought into play, such as the allegedly higher risk of corrosion and the hypothetical danger that someone will misuse the reactors to produce weapons-grade fissile material.

これは、中華人民共和国が2011年以来、TMSR-LF1の開発に4億ユーロ相当を投資することを妨げていない。結局のところ、北京の指導者たちは、2050年までに中国を「クライメートニュートラル」にするという野心的な目標を追求しており、溶融塩反応器の「完璧な技術」は絶対に不可欠であることを証明することができるだろう。

This has not prevented the People’s Republic of China from investing the equivalent of 400 million euros in the development of the TMSR-LF1 since 2011. After all, Beijing’s leaders are pursuing the ambitious goal of making the Middle Kingdom “climate neutral” by 2050, and the “perfect technology” of molten salt reactors could prove absolutely indispensable.

250MW溶融塩核分裂エネルギー発電設備 / 250 MW Molten Salt Fission Energy Power Facility

現在ゴビ砂漠の端でテストされている原子炉は、当初の公称出力はわずか2メガワットです。これは、約1000世帯にしか電力を供給できないことを意味します。しかし、TMSR-LF1の設計原理が成功すれば、出力373メガワットのトリウム溶融塩反応器の最初のプロトタイプが2030年頃までに稼働し、その後、中国全土で同じプラントが急速に連続して稼働します。ドイツが今なお原子力から遠ざかり続けるのか、それとも今も「グリーン原子力エネルギー」に頼っているのかは、まだ分からない。

The reactor, which is now to be tested on the edge of the Gobi Desert, initially has a nominal output of only two megawatts. This means that it can only supply around 1000 households with electricity. If the design principle of the TMSR-LF1 proves successful, however, the first prototype of a Thorium Molten Salt reactor with an output of 373 megawatts would go into operation by around 2030, which will then be followed by identical plants throughout China in rapid succession. It remains to be seen whether Germany will still remain in its abstinence from nuclear power at this time or whether it will now also rely on “green nuclear energy”.

中国ゴビ砂漠溶融塩工業施設 / Chinese Gobi Desert Molten Salt Industrial Facility

Development of GH3535 Alloy for Thorium Molten Salt Reactor

Wuwei, Gansu, China


PreußischeAllgemeineZeitung(PAZ)は、ドイツのメディア業界で唯一の声です。毎週、政治、文化、ビジネスの現在の出来事を報告し、私たちの社会の根本的な発展を支持しています。彼らの作品の中で、編集者は伝統的なプルーセンの価値観にコミットしていると感じています。古いプルーセンは、宗教的および思想的寛容、祖国への愛情と寛容さ、法の支配と知的誠実さ、そして特に社会のすべての分野での理由に基づく行動。このことを念頭に置いて、PAZはオープンな議論の文化を維持しています。これは、情熱的に独自の視点を表し、異なる考え方をする人々の意見を尊重し、発言権を与えます。日々の出来事を超えて、PAZは歴史的なプロイセンを思い出し、その文化遺産を大切にすることにコミットしていると感じています。これらの原則により、PreußischeAllgemeine Zeitungは、昨日、今日、明日、西と東の国と地域の間、そして私たちの国のさまざまな社会の流れの間のユニークなジャーナリズムの架け橋です。

The Preußische Allgemeine Zeitung (PAZ) is a unique voice in the German media landscape. Week after week, it reports on current events in politics, culture and business and takes a stand on the fundamental developments in our society. In their work, the editors feel committed to the traditional Prussian canon of values: The old Prussia stood and stands for religious and ideological tolerance, for love of homeland and open-mindedness, for the rule of law and intellectual honesty, and not least for reason-guided action in all areas of society . With this in mind, the PAZ maintains an open culture of debate, which passionately represents its own point of view and respects the opinions of those who think differently – and also lets them have their say. Beyond day-to-day events, the PAZ feels committed to remembering historical Prussia and caring for its cultural heritage. With these principles, the Preußische Allgemeine Zeitung is a unique journalistic bridge between yesterday, today and tomorrow, between the countries and regions in West and East – as well as between the different social currents in our country.


Translation courtesy of Duck Duck GoYour personal data is nobody’s business.

Like the article? Give payments directly to PAZ here, Anerkennungszahlung

Support us to make more bilingual offerings like this via our Patreon.


Links and References

  1. Original article: https://paz.de/artikel/perfekte-technologie-a6180.html
  2. https://paz.de/impressum.html
  3. https://english.sinap.cas.cn/
  4. https://www.ans.org/news/article-3091/china-moves-closer-to-completion-of-worlds-first-thorium-reactor/
  5. https://en.wikipedia.org/wiki/Thorium
  6. https://de.wikipedia.org/wiki/Forschungszentrum_J%C3%BClich
  7. https://en.wikipedia.org/wiki/Rudolf_Schulten
  8. https://en.wikipedia.org/wiki/Pebble_bed_reactor
  9. https://en.wikipedia.org/wiki/Aircraft_Reactor_Experiment
  10. https://en.wikipedia.org/wiki/Aircraft_Nuclear_Propulsion
  11. https://www.nextbigfuture.com/2017/12/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones.html
  12. https://regulatorwatch.com/reported_elsewhere/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones/
  13. https://www.nuclearaustralia.org.au/wp-content/uploads/2021/04/Mark_Ho_20210512.pdf
  14. http://samofar.eu/wp-content/uploads/2019/07/2019-TMSR-SAMOFAR%E2%80%94%E2%80%94Yang-ZOU-PDF-version-1.pdf
  15. https://threeconsulting.com/mt-content/uploads/2021/04/chinatmsr2018.pdf
  16. https://www.gen-4.org/gif/upload/docs/application/pdf/2017-05/03_hongjie_xu_china.pdf
  17. https://msrworkshop.ornl.gov/wp-content/uploads/2018/04/MSR2016-day1-15-Hongjie-Xu-Update-on-SINAP-TMSR-Research.pdf
  18. https://www.researchgate.net/publication/324580866_Development_of_GH3535_Alloy_for_Thorium_Molten_Salt_Reactor
  19. Wuwei, Gansu, China
  20. https://tcw15.mit.edu/sites/default/files/documents/TMSRstatus-liuwei.pdf
  21. https://paz.de/anerkennungszahlung.html
  22. https://www.patreon.com/TheThoriumNetwork
  23. https://help.duckduckgo.com/results/translation/

#PreußischeAllgemeineZeitung #PAZ #ShanghaiInstituteofAppliedPhysics #SINAP #ThoriumMoltenSalt #MoltenSaltFissionEnergyTechnology #MSFET #Thorium #Japan

The „Perfekte Technologie“ – a Bilingual Article

Shanghai Institute of Applied Physics
This article published 14 March 2022 by Preußische Allgemeine Zeitung, the Prussian General Newspaper. Copyright notice: applying fair use for educational purposes.

Zeichnet für den Thorium-based Molten Salt Reactor-Liquid Fuel No. 1 verantwortlich: Das Shanghai Institute of Applied Physics

Responsible for the Thorium-based Molten Salt Reactor-Liquid Fuel No. 1: The Shanghai Institute of Applied Physics

THORIUM-FLÜSSIGSALZREAKTOREN Kernreaktoren, in denen der Kernbrennstoff in Form geschmolzenen Salzes vorliegt, bieten eine Fülle von Vorteilen. In China wird in nächster Zukunft eine Versuchsanlage in Betrieb gehen

THORIUM MOLTEN SALT REACTORS Nuclear reactors in which the nuclear fuel is in the form of molten salt offer a wealth of advantages. A test plant will go into operation in China in the near future.

„Perfekte Technologie“

Der Ausgangsstoff ist billig und weltweit vorhanden, nicht einmal Kühlwasser wird benötigt und der Müll wird weniger und verfällt viel schneller als herkömmlicher Atommüll: Die Thorium-Technologie steht für eine neue Qualität der Nutzung der Kernenergie

Wolfgang Kaufmann, 23.01.2022

“Perfect technology”

The raw material is cheap and available worldwide, not even cooling water is needed and the waste is less and decays much faster than conventional nuclear waste: Thorium technology stands for a new quality of the use of nuclear energy

Wolfgang Kaufmann 23.01.2022

Im Hongshagang-Industriepark bei Wuwei in der zentralchinesischen Provinz Gansu wird in nächster Zukunft eine Versuchsanlage in Betrieb gehen, die das Potential besitzt, nicht nur die Energieerzeugung im Reich der Mitte, sondern in der ganzen Welt zu revolutionieren. Keine Kohlendioxidemissionen mehr infolge der Nutzung fossiler Brennstoffe, keine Landschaftsverschandelung durch Windräder, kein massenhafter Einsatz von Akkus aus umweltschädlicher Produktion, keine Stromausfälle bei Windstille und Bewölkung, aber auch kein Strahlungsrisiko aufgrund von Reaktorhavarien, alles das verspricht der innovative Thorium-based Molten Salt Reactor-Liquid Fuel No. 1 (TMSR-LF1) des Shanghai Institute of Applied Physics, der für eine neue Qualität der Nutzung der Kernenergie steht und dieser quasi einen „grünen Anstrich“ geben soll.

In the Hongshagang Industrial Park near Wuwei in the central Chinese province of Gansu, a pilot plant will go into operation in the near future, which has the potential to revolutionize energy production not only in the Middle Kingdom, but throughout the world. No more carbon dioxide emissions as a result of the use of fossil fuels, no more landscape degradation by wind turbines, no mass use of batteries from environmentally harmful production, no power outages in calm winds and clouds, but also no radiation risk due to reactor accidents, all this promises the innovative Thorium-based Molten Salt Reactor-Liquid Fuel No. 1 (TMSR-LF1) of the Shanghai Institute of Applied Physics, which advocates a new quality of use of the Nuclear energy is in place and this should give it a kind of “green coat of paint”.

Die Funktionsweise des Thorium-Flüssigsalzreaktors TMSR-LF1 ist relativ einfach. Das schwach radioaktive Element Thorium wird in Flüssigsalz aufgelöst und mit Neutronen beschossen. Dadurch entsteht das Isotop Uran 233, dessen Spaltung große Wärmemengen freisetzt. Der Reaktor produziert also seinen Brennstoff selbst. Dieses Verfahren bringt letztlich sehr viel mehr Sicherheit als der Betrieb klassischer Kernreaktoren (siehe unten) und darüber hinaus auch noch eine Vielzahl weiterer Vorteile.

The operation of the Thorium Molten Salt reactor TMSR-LF1 is relatively simple. The weakly radioactive element Thorium is dissolved in molten salt and bombarded with neutrons. This produces the isotope uranium 233, the fission of which releases large amounts of heat. So the reactor produces its own fuel. This process ultimately brings much more safety than the operation of classic nuclear reactors (see below) and also a variety of other advantages.

Sechs Vorteile

Six Benefits

Zum Ersten werden nur äußerst geringe Mengen an Thorium 232 benötigt. Denn der Energiegehalt einer Tonne Thorium entspricht der von 200 Tonnen Uran-Metall oder 28 Millionen Tonnen Kohle, wie der italienische Physik-Nobelpreisträger Carlo Rubbia errechnete.

First, only extremely small amounts of Thorium 232 are needed. The energy content of one ton of Thorium corresponds to that of 200 tons of uranium metal or 28 million tons of coal, as the Italian Nobel Laureate in Physics Carlo Rubbia calculated.

Zum Zweiten gibt es überall auf der Welt größere Thorium-Vorkommen. Im Prinzip kommt das Element in der Gesteinskruste ähnlich häufig vor wie Blei und fällt zudem als Abfallprodukt bei der Förderung von Seltenen Erden an. Deshalb ist es auch nicht teuer. Dahingegen drohen perspektivisch Verknappungen und Preisexplosionen beim Uran, weil die Zahl der konventionellen Kernkraftwerke neuerdings wieder deutlich zunimmt.

Secondly, there are larger Thorium deposits all over the world. In principle, the element occurs in the rock crust as often as lead and is also produced as a waste product in the extraction of rare earths. That’s why it’s not expensive. On the other hand, there is a risk of shortages and price explosions for uranium in the future, because the number of conventional nuclear power plants has recently increased significantly again.

Zum Dritten kann ein Thorium-Flüssigsalzreaktor praktisch überall errichtet werden, also beispielsweise auch in Wüstenregionen. Denn er benötigt keinerlei Kühlwasser.

Thirdly, a Thorium Molten Salt reactor can be built virtually anywhere, including desert regions, for example. Because it does not require any cooling water.

Zum Vierten entstehen bei seinem Betrieb auch deutlich weniger radioaktive Abfälle. Außerdem sollen über 99 Prozent des Atommülls aus dem TMSR-LF1 nach spätestens 300 Jahren in harmlose Isotope zerfallen sein. Des Weiteren besteht die Möglichkeit, die geringen Restmengen an länger strahlendem Material später in fortgeschritteneren Flüssigsalzreaktoren zu verarbeiten und damit gänzlich zu neutralisieren. Zum Vergleich: In mit Uran betriebenen konventionellen Atommeilern fallen langlebige radioaktive Spaltprodukte mit Halbwertszeiten von vielen tausend Jahren an, obwohl nur ein kleiner Bruchteil des verwendeten Kernbrennstoffs genutzt wird.

Fourthly, its operation also generates significantly less radioactive waste. In addition, more than 99 percent of the nuclear waste from the TMSR-LF1 is said to have decayed into harmless isotopes after 300 years at the latest. Furthermore, it is possible to process the small residual amounts of longer radiating material later in more advanced molten salt reactors and thus completely neutralise. By way of comparison, conventional nuclear reactors powered by uranium produce long-lived radioactive fission products with half-lives of many thousands of years, even though only a small fraction of the nuclear fuel used is used.

Zum Fünften liegen die Kosten für den Bau und Betrieb von Thorium-Flüssigsalzreaktoren niedriger als bei den sonst zumeist verwendeten Leichtwasser-Reaktoren. Das resultiert vor allen aus dem geringen Betriebsdruck der Anlagen, der zahlreiche Sicherheitsvorkehrungen überflüssig macht, sowie der Tatsache, dass keine Brennstäbe beschafft werden müssen.

Fifthly, the costs for the construction and operation of Thorium Molten Salt reactors are lower than those of the light-water reactors that are usually used. This is mainly due to the low operating pressure of the systems, which makes numerous safety precautions superfluous, as well as the fact that no fuel rods have to be procured.

Zum Sechsten lassen sich Reaktoren wie der TMSR-LF1 auch deshalb ausgesprochen wirtschaftlich betreiben, weil in ihnen nicht nur Uran 233 erbrütet wird, sondern zusätzlich noch viele andere radioaktive Spaltprodukte entstehen, die zum Beispiel in der Nuklearmedizin benötigt werden. Und manche der Radionuklide verwandeln sich sogar in ausgesprochen begehrte Elemente wie Rubidium, Zirconium, Molybdän, Ruthenium, Palladium, Neodym und Samarium. Desgleichen wird das Edelgas Xenon frei, das unter anderem als Isolationsmedium sowie in der Laser- und Raumfahrttechnik zum Einsatz kommt.

Sixthly, reactors such as the TMSR-LF1 can also be operated extremely economically because not only uranium 233 is incubated in them, but also many other radioactive fission products are produced, which are required, for example, in nuclear medicine. And some of the radionuclides even turn into highly sought-after elements such as rubidium, zirconium, molybdenum, ruthenium, palladium, neodymium and samarium. Likewise, the noble gas xenon is released, which is used, among other things, as an insulation medium as well as in laser and aerospace technology.

Der Krieg ist aller Dinge Vater

War is the father of all things

Erfunden wurde die dem TMSR-LF1 zugrunde liegende Technologie nicht in China, sondern in den USA. Dort experimentierten die Luftstreitkräfte bereits ab 1954 mit einem kleinen Flüssigsalzreaktor, der zum Antrieb von Langstreckenbombern dienen sollte. Das Projekt fand jedoch ein rapides Ende, als die Vereinigten Staaten über Interkontinentalraketen verfügten. Ebenso legten bundesdeutsche Wissenschaftler aus der Kernforschungsanlage Jülich zu Beginn der 1970er Jahre einige Studien über Flüssigsalzreaktoren vor, die letztlich wegen der ablehnenden Haltung des damaligen Leiters der Reaktorentwicklung, Rudolf Schulten, keine Beachtung fanden.

The technology underlying the TMSR-LF1 was not invented in China, but in the USA. As early as 1954, the Air Force experimented with a small molten salt reactor to power long-range bombers. However, the project came to a rapid end when the United States had intercontinental ballistic missiles. Likewise, at the beginning of the 1970s, West German scientists from the Jülich nuclear research facility presented some studies on molten salt reactors, which ultimately received no attention because of the negative attitude of the then head of reactor development, Rudolf Schulten [main developer of the pebble bed reactor design, a non fluid fuel system].

Ein weiterer Grund für die fehlende Akzeptanz des alternativen Reaktortyps war das absolute Desinteresse der Nu-klearindustrie rund um die Welt. Mit den klassischen Atommeilern ließ sich hervorragend Geld verdienen, und auf die Einnahmen aus der Herstellung von Brennstäben wollte auch niemand verzichten. Deshalb wurden allerlei vorgeschobene Argumente gegen den Einsatz von Flüssigsalzreaktoren ins Spiel gebracht, wie beispielsweise das angeblich höhere Korrosionsrisiko und die hypothetische Gefahr, dass jemand die Meiler missbraucht, um waffenfähiges Spaltmaterial zu produzieren.

Another reason for the lack of acceptance of the alternative reactor type was the absolute lack of interest of the nuclear industry around the world. With the classic nuclear reactors, excellent money could be earned, and no one wanted to do without the income from the production of fuel rods. Therefore, all sorts of pretended arguments against the use of molten salt reactors were brought into play, such as the allegedly higher risk of corrosion and the hypothetical danger that someone will misuse the reactors to produce weapons-grade fissile material.

Dies hat die Volksrepublik China nicht davon abgehalten, seit 2011 umgerechnet 400 Millionen Euro in die Entwicklung des TMSR-LF1 zu investieren. Schließlich verfolgt die Pekinger Führung das ehrgeizige Ziel, das Reich der Mitte bis 2050 „klimaneutral“ zu machen, und dabei könnte sich die „perfekte Technologie“ der Flüssigsalzreaktoren als absolut unverzichtbar erweisen.

This has not prevented the People’s Republic of China from investing the equivalent of 400 million euros in the development of the TMSR-LF1 since 2011. After all, Beijing’s leaders are pursuing the ambitious goal of making the Middle Kingdom “climate neutral” by 2050, and the “perfect technology” of molten salt reactors could prove absolutely indispensable.

250 MW Molten Salt Fission Energy Power Facility

Der Reaktor, der nun am Rande der Wüste Gobi erprobt werden soll, hat erst einmal nur eine Nennleistung von zwei Megawatt. Damit kann er lediglich um die 1000 Haushalte mit Strom versorgen. Sollte sich das Konstruktionsprinzip des TMSR-LF1 bewähren, dann würde allerdings bis etwa 2030 der erste Prototyp eines Thorium-Flüssigsalzreaktors mit 373 Megawatt Leistung in Betrieb gehen, dem dann in schneller Folge identische Anlagen in ganz China folgen. Ob Deutschland zu diesem Zeitpunkt immer noch in seiner Atomkraft-Abstinenz verharrt oder inzwischen auch auf die „Grüne Kernenergie“ setzt, bleibt abzuwarten.

The reactor, which is now to be tested on the edge of the Gobi Desert, initially has a nominal output of only two megawatts. This means that it can only supply around 1000 households with electricity. If the design principle of the TMSR-LF1 proves successful, however, the first prototype of a Thorium Molten Salt reactor with an output of 373 megawatts would go into operation by around 2030, which will then be followed by identical plants throughout China in rapid succession. It remains to be seen whether Germany will still remain in its abstinence from nuclear power at this time or whether it will now also rely on “green nuclear energy”.

Chinese Gobi Desert Molten Salt Industrial Facility

Die Preußische Allgemeine Zeitung (PAZ) ist eine einzigartige Stimme in der deutschen Medienlandschaft. Woche für Woche berichtet sie über das aktuelle Zeitgeschehen in Politik, Kultur und Wirtschaft und bezieht zu den grundlegenden Entwicklungen unserer Gesellschaft Stellung. In ihrer Arbeit fühlt sich die Redaktion dem traditionellen preußischen Wertekanon verpflichtet: Das alte Preußen stand und steht für religiöse und weltanschauliche Toleranz, für Heimatliebe und Weltoffenheit, für Rechtstaatlichkeit und intellektuelle Redlichkeit sowie nicht zuletzt für ein von der Vernunft geleitetes Handeln in allen Bereichen der Gesellschaft. In diesem Sinne pflegt die PAZ eine offene Debattenkultur, die gleichermaßen den eigenen Standpunkt mit Leidenschaft vertritt wie sie die Meinung von Andersdenkenden achtet – und diese auch zu Wort kommen lässt. Jenseits des Tagesgeschehens fühlt sich die PAZ der Erinnerung an das historische Preußen und der Pflege seines kulturellen Erbes verpflichtet. Mit diesen Grundsätzen ist die Preußische Allgemeine Zeitung eine einzigartige publizistische Brücke zwischen dem Gestern, Heute und Morgen, zwischen den Ländern und Regionen in West und Ost – sowie zwischen den verschiedenen gesellschaftlichen Strömungen in unserem Lande.

The Preußische Allgemeine Zeitung (PAZ) is a unique voice in the German media landscape. Week after week, it reports on current events in politics, culture and business and takes a stand on the fundamental developments in our society. In their work, the editors feel committed to the traditional Prussian canon of values: The old Prussia stood and stands for religious and ideological tolerance, for love of homeland and open-mindedness, for the rule of law and intellectual honesty, and not least for reason-guided action in all areas of society . With this in mind, the PAZ maintains an open culture of debate, which passionately represents its own point of view and respects the opinions of those who think differently – and also lets them have their say. Beyond day-to-day events, the PAZ feels committed to remembering historical Prussia and caring for its cultural heritage. With these principles, the Preußische Allgemeine Zeitung is a unique journalistic bridge between yesterday, today and tomorrow, between the countries and regions in West and East – as well as between the different social currents in our country.


Translation courtesy of Duck Duck GoYour personal data is nobody’s business.

Like the article? Give payments directly to PAZ here, Anerkennungszahlung

Support us to make more bilingual offerings like this via our Patreon.


References and Links

1. Original article: https://paz.de/artikel/perfekte-technologie-a6180.html
2. https://paz.de/impressum.html
3. https://english.sinap.cas.cn/
4. https://www.ans.org/news/article-3091/china-moves-closer-to-completion-of-worlds-first-thorium-reactor/
5. https://en.wikipedia.org/wiki/Thorium
6. https://de.wikipedia.org/wiki/Forschungszentrum_J%C3%BClich
7. https://en.wikipedia.org/wiki/Rudolf_Schulten
8. https://en.wikipedia.org/wiki/Pebble_bed_reactor
9. https://en.wikipedia.org/wiki/Aircraft_Reactor_Experiment
10. https://en.wikipedia.org/wiki/Aircraft_Nuclear_Propulsion
11. https://www.nextbigfuture.com/2017/12/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones.html
12. https://regulatorwatch.com/reported_elsewhere/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones/
13. https://www.nuclearaustralia.org.au/wp-content/uploads/2021/04/Mark_Ho_20210512.pdf
14. http://samofar.eu/wp-content/uploads/2019/07/2019-TMSR-SAMOFAR%E2%80%94%E2%80%94Yang-ZOU-PDF-version-1.pdf
15. https://threeconsulting.com/mt-content/uploads/2021/04/chinatmsr2018.pdf
https://www.gen-4.org/gif/upload/docs/application/pdf/2017-05/03_hongjie_xu_china.pdf
16. https://msrworkshop.ornl.gov/wp-content/uploads/2018/04/MSR2016-day1-15-Hongjie-Xu-Update-on-SINAP-TMSR-Research.pdf
17. https://tcw15.mit.edu/sites/default/files/documents/TMSRstatus-liuwei.pdf
18. https://paz.de/anerkennungszahlung.html
19. https://www.patreon.com/TheThoriumNetwork
20. https://help.duckduckgo.com/results/translation/

#PreußischeAllgemeineZeitung #PAZ #ShanghaiInstituteofAppliedPhysics #SINAP #ThoriumMoltenSalt #MoltenSaltFissionEnergyTechnology #MSFET #Thorium

China leading the way in Thorium Molten Salt Technology Development

China Thorium Molten Salt 26 July 2021

More than 50 years since the MSRE ended in Oak Ridge, Tennessee, USA, another starts up. This time in China. Whilst Oak Ridge’s machine was 8 MWt, China’s is 2MWt. This article by Gernot Kramper was published in the German Star online magazine on September 20, 2021. Well done China.

https://www.stern.de/digital/technik/sicher–klein-und-billig—china-baut-den-ersten-thorium-reaktor–30632008.html

Thorium News and All Things Related

Thorium Molten Salt Burner

This is page is where our news articles will be published. Those related to our project, and those related to the industries we work in.

There’s quite a lot going on from Rare Earths mining and processing, Fluorination of fuels, to Molten Salt Modelling Technology, to regulations and new laws from around the world.