The Secret to Success in this Sector is to Be Passionate

Flag of Türkiye

Featuring Başkani Gül GOKTEPE, Nutek Inc, Türkiye.

NÜKAD BAŞKANI GÜL GÖKTEPE:
“BU SEKTÖRDE BAŞARININ SIRRI, TUTKULU OLMAK”

NÜKAD CHAIRMAN GÜL GÖKTEPE:
“THE SECRET TO SUCCESS IN THIS INDUSTRY IS TO BE PASSIONATE”

President / Başkani Gül GÖKTEPE, Nutek Inc, and Chapter President, Women in Nuclear, Türkiye

Tarih boyunca devrim niteliğinde buluşlarıyla çok sayıda kadın insanlığın gelişimine katkı sağlayan sayısız başarıya imza atarken, bu başarıların çoğu gölgede kaldı. Bilim, teknoloji, mühendislik ve matematik alanlarında çalışan kadınlara yönelik asırlardır var olan ve Einstein’ın “atom çekirdeğini parçalamaktan daha zordur” dediği ön yargıların da bunda etkisi büyük oldu.  Yaşadıkları dönemin önüne geçmeyi başaran bilim kadınları ise halen günümüze ışık olmaya devam ediyorlar. Radyolojiden kanser tedavilerinde kullanılan radyoterapiye kadar çok sayıda alanın temelini oluşturan, iki Nobel ödüllü Polonya asıllı Kimyager ve Fizikçi Marie Curie, nükleer füzyon konusundaki buluşları ile tarihe geçmeyi başaran Avusturyalı Fizikçi Lise Meitner, nükleer endüstriye kazandırdığı teknolojilerle ‘elementlere hükmeden kadın’ diye tanımlanan Rus nükleer fizikçi Zinaida Yerşova nükleer alanda ‘ilham kaynağı’ olan önemli isimler.

While many women have achieved countless successes that have contributed to the development of humanity with their revolutionary inventions throughout history, most of these successes have been overshadowed. The prejudices against women working in the fields of science, technology, engineering and mathematics, which have existed for centuries and that Einstein said “it is harder than splitting the atomic nucleus”, had a great effect on this. The women of science who managed to get ahead of the period they lived in still continue to be the light of today. Two Nobel laureates, Polish-born Chemist and Physicist Marie Curie, which forms the basis of many fields from radiology to radiotherapy used in cancer treatments, Austrian Physicist Lise Meitner, who managed to go down in history with her discoveries on nuclear fusion, Russian nuclear physicist who is defined as “the woman who rules the elements” with the technologies she brought to the nuclear industry. Zinaida Yerşova is an important name in the nuclear field who is an ‘inspiration’.

ROL MODELLERİN ROLÜ

Zorlu koşullara göğüs gererek, inandığı şeyden vazgeçmeyen cesur ve güçlü kadınların ‘yaşanabilir bir dünya için’ mücadeleleri bugün de devam ediyor. Ancak, hem ortaöğretim hem de yükseköğretimde kadın sayısındaki artışlara rağmen, halen “STEM” adı verilen bilim, teknoloji, mühendislik ve matematik alanlarında yeterince temsil edilmiyorlar.  Uluslararası Atom Enerjisi Ajansı’na (IAEA) göre gençler meslek seçimi yaparken, toplumun bir bilim insanının neye benzediğine dair klişe bakış açılarından ve önyargılarından çok etkileniyorlar. Özellikle nükleer alanda rol modellerin, gençlerin tercihinde önemli rol oynadığına dikkat çekiliyor. Türkiye’de de son yıllarda başarılı bilim kadınları, ilham veren hikâyeleri ve yürüttükleri projelerle pek çok gence ilham kaynağı oluyorlar. Radyolojiden çevreye, sağlıktan tarıma, güvenlikten iklim değişikliğine kadar farklı alanlarındaki örnek çalışmalarıyla nükleere yönelik mitlerin ve ön yargıların önüne geçmeyi de başarıyorlar.

THE ROLE OF ROLE MODELS

The struggle of brave and strong women, who do not give up on what they believe in by enduring difficult conditions, continues today for a livable world. However, despite the increases in the number of women in both secondary and higher education, they are still underrepresented in the so-called “STEM” fields of science, technology, engineering and mathematics. According to the International Atomic Energy Agency (IAEA), when choosing a career, young people are influenced by society’s stereotypical viewpoints and prejudices about what a scientist looks like. It is noted that role models, especially in the nuclear field, play an important role in the choice of young people. In recent years, successful women scientists in Turkey have been a source of inspiration for many young people with their inspiring stories and projects. With their exemplary work in different fields from radiology to the environment, from health to agriculture, from security to climate change, they also succeed in preventing myths and prejudices about nuclear.

SORUNLAR İÇİN ORTAK MÜCADELE

Avrupa Nükleer Araştırma Merkezi CERN’de önemli çalışmalara imza atan, uzay radyasyonu ve uzay fiziği konularında uluslararası başarılara sahip, “Dünyanın bilime, bilimin kadınlara ihtiyacı var” mottosu ile verilen ‘Uluslararası UNESCO Yükselen Yetenek Ödülü’nü 2017 yılında alan Prof. Dr. Bilge Demirköz, önemli rol modellerden biri. Türkiye’nin ilk ‘Parçacık Radyasyonu Test Altyapısı Projesi’ şu anda onun liderliğinde sürdürülüyor.  Demirköz, bir yandan da gençleri bilim dünyasına teşvik edecek projelere katılıyor, konferanslar veriyor, sergiler düzenliyor.  Demirköz,  kadınları bilime teşvik etmenin önemini şöyle anlatıyor: “Dünyanın yükleri ve problemleri artıyor. Bu problemleri çözmek için güce ihtiyacımız var. Bu gücün yüzde 50’sini kadınlar oluşturuyor. Küreselleşen dünyada ise kadının geride kaldığı toplumlar gelişemez. Bu nedenle hem problemleri hep birlikte çözmek hem de kadınların gelişimini desteklemek için kadınları bilime daha çok teşvik etmeliyiz.”

COMMON FIGHTING FOR PROBLEMS

Having carried out important studies at the European Nuclear Research Center, CERN, having international achievements in space radiation and space physics, and receiving the “International UNESCO Emerging Talent Award” in 2017, given with the motto “The world needs science and science needs women”, Prof. Dr. Bilge Demirköz is one of the important role models. Turkey’s first ‘Particle Radiation Test Infrastructure Project’ is currently under his leadership. Demirkoz also participates in projects that will encourage young people to the world of science, gives conferences and organizes exhibitions. Demirköz explains the importance of encouraging women to science as follows: “The burdens and problems of the world are increasing. We need power to solve these problems. Women make up 50 percent of this power. In the globalizing world, societies where women are left behind cannot develop. For this reason, we should encourage women to science more, both to solve problems together and to support the development of women.”

“The world needs science and science needs women.”

Prof. Dr. Bilge Demirköz, Ankara, Turkey
“The world needs science and science needs women” – Prof. Dr. Bilge Demirköz,, Ankara, Turkey

TÜM DÜNYADA BİTKİLERDE VERİM ARTIŞI

Türkiye’de yürüttüğü sayısız başarılı tarım projesinin ardından IAEA’da Nükleer Bilimler ve Uygulamalar Bölümü’nde ‘Bitki Islahçısı ve Genetikçi’ olarak çalışan Türk bilim insanı Ziraat Mühendisi Fatma Sarsu, ‘rol model’ kadınlardan biri.  Sarsu, IAEA’nın sitesinde çok sayıda gence ilham verecek hikâyesini şöyle anlatıyor: “Babamın çiftliğinde büyüdüm. Onun ekinlerine duyduğu sevgiyi, onlara nasıl baktığını izlemek beni tarımda çalışmaya ikna etti. Ürün ve mutasyon ıslahını incelemek, mahsul verimliliğini nasıl artıracağımızı öğrenmenin en hızlı yolu olarak ortaya çıktı. IAEA’da bitki ıslahı ve genetiği üzerinde çalışmak, tüm dünyada tarım ürünleri verimliliğini artırmak gibi daha da büyük bir çiftlik verdi bana.  Her gün profesyonel bir tarım bilimcisi olarak insanlığın yararına çalıştığımı bilmek bana büyük mutluluk veriyor.”

INCREASED PRODUCTION OF PLANTS ALL OVER THE WORLD

Agricultural Engineer Fatma Sarsu, a Turkish scientist working as a ‘Plant Breeder and Geneticist’ in the Nuclear Sciences and Applications Department of the IAEA, after numerous successful agricultural projects she carried out in Turkey, is one of the ‘role model’ women. Sarsu tells his story that will inspire many young people on the IAEA website: “I grew up on my father’s farm. Watching his love for his crops and how he looked after them convinced me to work in agriculture. Studying crop and mutation breeding has emerged as the fastest way to learn how to increase crop productivity. Working on plant breeding and genetics at the IAEA has given me an even bigger farm to increase crop productivity around the world. It gives me great pleasure to know that every day I work for the benefit of humanity as a professional agronomist.”

YAŞAMI İYİLEŞTİRME SORUMLULUĞU

Türkiye’nin çeşitli dönemlerdeki nükleer teknoloji transferi ve nükleer santral kurma hazırlık süreçlerine yakından tanıklık eden Türkiye’de “Nükleer Alanda Kadınlar” (NÜKAD) olarak bilinen, “WIN (Women in Nuclear) Global Turkey” Grubu’nun kurucusu ve Başkanı olan B. Gül Göktepe de nükleer alanın öncü isimlerinden. Çekmece Nükleer Araştırma Merkezi için geliştirdiği Göl Projesi, Birleşmiş Milletler (BM) ve Uluslararası Atom Enerjisi Ajansı’nın (IAEA)  en başarılı teknik işbirliği projeleri arasında gösterilen “Karadeniz’in Çevresel Yönetimi” gibi dikkat çeken çevre projelerine imza attı. BM Viyana Daimi Temsilciliği’nde Türkiye’nin ilk kadın Nükleer Ataşesi olarak görev yaptı. “Nükleer alanda çalışmak büyüleyici olduğu kadar zordur da” ifadelerini kullanan Göktepe, “Yaşamı iyileştirmek ve gezegeni korumak gibi büyük sorumluluk taşıyoruz. Ve bu sektörde başarılı olmanın sırrı, tutkulu olmak! Nükleerde kadın sayımız gün geçtikçe artacak, buna inanıyorum. Yapacak çok işimiz var ve dünyanın bize ihtiyacı var!” diyor.

LIFE IMPROVEMENT RESPONSIBILITY

Witnessing Turkey’s nuclear technology transfer and nuclear power plant preparation processes in various periods, Gül Göktepe., the founder and President of the “WIN (Women in Nuclear) Global Turkey” Group, known as “Women in the Nuclear Field” (NÜKAD) in Turkey. Gül Göktepe is one of the leading names in the nuclear field. She undersigned remarkable environmental projects such as the Lake Project she developed for the Çekmece Nuclear Research Center and the “Environmental Management of the Black Sea”, which is shown as one of the most successful technical cooperation projects of the United Nations (UN) and the International Atomic Energy Agency (IAEA). She served as Turkey’s first female Nuclear Attaché at the UN Vienna Permanent Mission. Göktepe said, “Working in the nuclear field is as challenging as it is fascinating” and said, “We have a great responsibility to improve life and protect the planet. And the secret to success in this industry is to be passionate! I believe that the number of women in nuclear will increase day by day. We have a lot of work to do and the world needs us!” she says.

AKKUYU GİBİ UZUN İNCE BİR YOL

Hayat hikâyesini “Türkiye’nin Akkuyu hikâyesi gibi zorluklarla dolu, çok uzun ve ince bir yol” olarak tanımlayan Göktepe, İngiltere’de atom mühendisliği okuduğunu, ülkeye dönüşünde katıldığı enerji kongresinde, dönemin Enerji ve Tabii Kaynaklar Bakanının ‘600 MW gücündeki ilk nükleer santralin Akkuyu’da kurulacağı ve 1986 yılında işletmeye alınacağı müjdesi’ ile sektöre umutla adım attığını söylüyor.  “O kongreden bu yana nerdeyse 44 yıl geçmiş. Düşünüyorum da o zamandan bu yana nükleerde dünya nerede, biz neredeyiz” diyen Göktepe, Türkiye’nin nükleer santral hikâyesini ise şu sözlerle özetliyor: “Türkiye’nin ilk nükleer santrali Akkuyu Nükleer Santrali projesinde geçmişte öngörülemeyen zorluklar, ertelemeler yaşandı. Şimdi, ne mutlu ki inşaatı tüm hızıyla sürüyor. Kafamda bunca yıllık zorlu mücadeleden sonra değişmeyen bir tek olgu var. O da nükleer teknolojinin dünyanın ve Türkiye’nin geleceği için vazgeçilemez olduğu. Şu anda dünyanın geleceğini tehdit eden en büyük tehlike; iklim değişikliği. Sera gazı emisyonlarını azaltmak için karbonsuz elektrik üretimine ihtiyaç var. O da yenilenebilir enerji, nükleer santraller ve karbon yakalama ve depolamalı fosil yakıtlar (carbon capture and storage-CCS)  olmak üzere sadece üç yoldan elde edilebiliyor.”

A LONG THIN ROAD LIKE AKKUYU

Defining her life story as “a very long and narrow road full of difficulties, like Turkey’s Akkuyu story”, Göktepe said that she studied atomic engineering in England, and that she attended the energy congress on her return to the country, and that the Minister of Energy and Natural Resources of the time said that the first nuclear power plant with 600 MW power was Akkuyu. She says that she stepped into the sector with hope with the good news that it will be established in ‘Turkey and will be put into operation in 1986’. “It has been almost 44 years since that congress. Goktepe, who says, “Where are we and where are we in the nuclear field since then,” said, and summarizes Turkey’s nuclear power plant story with these words: “In the past, unforeseen difficulties and delays were experienced in the Akkuyu Nuclear Power Plant project, Turkey’s first nuclear power plant. Now, fortunately, its construction is in full swing. There is only one fact in my mind that has not changed after all these years of hard struggle. That nuclear technology is indispensable for the future of the world and Turkey. The biggest danger threatening the future of the world right now; climate change. Carbon-free electricity generation is needed to reduce greenhouse gas emissions. It can be obtained in only three ways: renewable energy, nuclear power plants and fossil fuels with carbon capture and storage (CCS).

President of Nutek inc, and Women in Nuclear, Turkey, Gül Göktepe of Istanbul, Turkey was the first women representing Turkey at the IAEA in Vienna, Austria, having also spent time on numerous international nuclear missions, including the Chernobyl and Fukushima incidents. She has published over one hundred and thirty scientific papers and authored many articles related to nuclear power stations, and the Black Sea. She has received numerous awards and fellowships including an international medal, the Black Sea Medal, awarded for outstanding services to protect the Black Sea environment, by UNDP GEF, BSC and BSERP.

BAŞARILARI DİKKAT ÇEKİCİ

Hacettepe Üniversitesi Radyasyon Onkolojisi Ana Bilimdalı Radyoterapi Fiziği Programı’ndaki doktora çalışması kapsamında geliştirdiği ‘radyoterapide her hastaya ve bölgeye (meme, tiroid vb.) uyabilecek zırh ve karşı memeyi tedavi alanından uzaklaştıracak sütyen tasarımıyla Hacettepe Üniversitesi ve Hacettepe Teknokent Teknoloji Transfer Merkezi işbirliği ile düzenlenen “Hacettepe Hamle İnovasyon Yarışması”nda 2018 yılında Sağlık Teknolojileri alanında birinci olan Nükleer Enerji Mühendisi Nur Kodaloğlu, alanın genç ve başarılı isimlerinden biri. 2019 yılında Teknofest kapsamında Türk Patent Enstitüsü’nün düzenlediği ISIF 2019- Uluslararası Buluş Fuarı’nda “İkincil Kanser Riskini Azaltan Bir Sütyen” patenti ile ‘bronz madalya’ ile ödüllendirilen ve yeni buluşlar üzerinde çalışan Kodaloğlu kadınların bilime katkısını şu sözlerle vurguluyor: “Farklı meslek gruplarındaki kadınlar toplumun çeşitliliğini yansıtmaktadır. Bugün hem nükleer mühendislik alanında, hem de hastanelerin radyoterapi bölümlerindeki kadın medikal fizikçi ve kadın hekimler ile nükleer tıp, radyoloji bölümlerindeki kadın hekimlerin sayısı azımsanmayacak kadar çok. Yaptıkları yayınlar göz önünde bulundurulduğunda bilime yaptıkları katkının da bir o kadar fazla olduğu görülecektir. Kadınların toplumun nükleer teknolojilere olan güvenini arttırmada da önemli rolleri var.”

SUCCESSFUL ACHIEVEMENTS

Organized in cooperation with Hacettepe University and Hacettepe Teknokent Technology Transfer Center, with the armor design that can fit each patient and region (breast, thyroid, etc.) and the bra that will move the opposite breast away from the treatment area, she developed within the scope of her doctoral study in the Radiation Oncology Department of Hacettepe University, Radiotherapy Physics Program. Nuclear Energy Engineer Nur Kodaloğlu, who won the first place in the field of Health Technologies in the Hacettepe Move Innovation Competition in 2018, is one of the young and successful names in the field. Kodaloğlu, who was awarded the ‘bronze medal’ with the patent “A Bra that Reduces the Risk of Secondary Cancer” at the ISIF 2019-International Inventions Fair organized by the Turkish Patent Institute within the scope of Teknofest in 2019 and working on new inventions, emphasizes the contribution of women to science with the following words: “Different professions Today, the number of female medical physicists and female physicians in both nuclear engineering and radiotherapy departments of hospitals, and female physicians in nuclear medicine and radiology departments is substantial. “Women also play an important role in increasing society’s confidence in nuclear technologies.”

POZİTİF KATKI SAĞLIYORUZ

“Teknolojik gelişmeyle paralel nükleer enerjinin kullanıldığı her alanda Türkiye’yi ileriye taşıyacağına inanıyorum” diyen Feride Kutbay, nükleer reaktör güvenliği alanında yaptığı çalışmalarla dikkat çeken başarılı genç bilim insanlarından biri. İstanbul Teknik Üniversitesi (İTÜ) Enerji Enstitüsü’nde Nükleer Araştırmalar Ana Bilim Dalı’nda Araştırma Görevlisi olarak görev yapan Kutbay, Türkiye’de bu alanda yeni iş fırsatlarının da artmaya başladığına dikkat çekerek, şunları ifade ediyor: “Nükleer güç santralini barındıran bir ülke olarak, nükleer reaktörlerin işletilmesi için yetiştirilen uzmanların dışında IAEA standartlarının ülkemizde uygulanmasında görev alacak uzmanlara da ihtiyaç var. Şu anda Rusya’da eğitim gören öğrencilerimizin dışında Türkiye, son birkaç yıldır Milli Eğitim Bakanlığı’na bağlı yurt dışı yüksek lisans bursu ile nükleer alanda yetiştirilmek üzere farklı ülkelere öğrenci gönderiyor. Geleceğe yönelik insan kaynağımızı güçlendiriyoruz. Kadın istihdam oranının artırılması ve kadın profesyonellerin yetiştirilmesine yönelik adımların Türkiye’de gelişmekte olan nükleer sektöre pozitif yönde etki edeceğini düşünüyorum. Kadınlar bu mesleğe enerji ve güç veriyor.”

WE PROVIDE POSITIVE CONTRIBUTION

Feride Kutbay, who said, “I believe that it will carry Turkey forward in every field in which nuclear energy is used in parallel with technological development,” is one of the successful young scientists who draw attention with her studies in the field of nuclear reactor safety. Kutbay, who works as a Research Assistant in the Department of Nuclear Research at Istanbul Technical University (ITU) Energy Institute, draws attention to the fact that new job opportunities have started to increase in this field in Turkey, and says: “As a country that hosts a nuclear power plant, In addition to the experts trained for the operation of nuclear reactors, there is also a need for experts who will take part in the implementation of IAEA standards in our country. Apart from our students currently studying in Russia, Turkey has been sending students to different countries to be trained in the nuclear field for the last few years, with a graduate scholarship from the Ministry of National Education. We are strengthening our human resources for the future. I think that steps towards increasing the rate of female employment and training female professionals will have a positive impact on the developing nuclear sector in Turkey. Women give energy and strength to this profession.”

“I believe that it will carry Turkey forward in every field in which nuclear energy is used in parallel with technological development.”

Feride KUTBAY, Istanbul Institute of Technology. Türkiye

First published in Gulnar City 8 July 2020. Reproduced here in English and Turkish.


Links and References

  1. https://www.gulnarcity.com/m-haber-6082.html?islem=haber&id=6852
  2. http://nutekinc.biz/en/gul-goktepe
  3. https://www.enerjigunlugu.net/goktepe-hem-cevreci-hem-nukleer-karsiti-olamazsiniz-37611h.htm
  4. https://world-nuclear.org/information-library/country-profiles/countries-t-z/turkey.aspx
  5. https://nonproliferation.org/the-black-sea-women-in-nuclear-network/
  6. https://en.wikipedia.org/wiki/Turkey
  7. https://www.linkedin.com/in/b-g%C3%BCl-g%C3%B6ktepe-71420888/
  8. https://en.wikipedia.org/wiki/Marie_Curie
  9. https://en.wikipedia.org/wiki/Lise_Meitner
  10. https://en.wikipedia.org/wiki/Zinaida_Yershova
  11. https://www.linkedin.com/in/bilgedemirkoz/
  12. https://www.iaea.org/newscenter/multimedia/photoessays/women-in-nuclear-science
  13. https://www.linkedin.com/in/fatma-sarsu-71733361/
  14. https://en.wikipedia.org/wiki/Akkuyu_Nuclear_Power_Plant
  15. https://rosatom.ru/en/
  16. https://www.linkedin.com/in/nur-kodaloglu-62582574
  17. https://www.linkedin.com/in/feride-kutbay-2b0943155

#Turkey #Türkiye #NuclearEnergy #Fission #WomenInNuclear

How U.S. Policy Shifted Energy & Technology Hegemony to China

Plant Vogtle

By James Kennedy, President of ThREEConsulting.com and John Kutsch, Executive Director of Thorium Energy Alliance, October 3, 2022.

Ordinally appearing in LinkedIn Pulse. Reproduced for educational purposes and with permission.

The Pentagon recently halted the delivery of F-35 fighter jets when it was discovered that they contained Chinese rare earth components. If the Pentagon would look a little more closely, they would find that Chinese rare earth derived components are ubiquitously distributed throughout all U.S. / NATO weapon systems.

It isn’t only U.S. weapon systems, China controls global access to rare earth metals and magnets (and other downstream critical materials) for EVs, wind turbines, and most other green- technology.

However, China’s vision is much more ambitious than controlling the supply-chain for high-tech commodities, they are leveraging their dominance into the clean energy sector. Last month Chinese authorities authorized the startup of what should be considered the world’s only Generation-5 nuclear reactor: a reactor that is inherently safe, non-proliferating, and can consume nuclear waste.

The goal of Net-Zero, and any potential economic benefits, are entirely under China’s control.

China’s leadership position in both of these areas can be traced back to irrational policies and legacy prejudices specific to thorium, a mildly radioactive element that is commonly found in heavy rare earth minerals.

The words that follow, detail the history of how China surpassed the U.S. with its own nuclear technology and displaced its historic leadership position in rare earths.

A Short History on U.S. Nuclear Development

In 1962 Nobel Prize Winning scientist Glenn Seaborg responded to President John F. Kennedy’s request for a Sustainable U.S. Energy Plan. The report titled “Civilian Nuclear Power” called for the development and deployment of Thorium Molten Salt Breeder Reactors.

Abstract
This overarching report on the role of nuclear power in the U.S. economy was requested by U.S. President John F. Kennedy in March, 1962. The U.S. Atomic Energy Commission was charged with producing the report, gaining input from individuals inside and outside government, including the Department of Interior, the Federal Power Commission, and the National Academy of Sciences Committee on Natural Resources. The study was to identify the objectives, scope, and content of a nuclear power development program in light of prospective energy needs and resources. It should recommend appropriate steps to assure the proper timing of development and construction of nuclear power projects, including the construction of necessary prototypes and continued cooperation between government and industry. There should also be an evaluation of the extent to which the U.S. nuclear power program will further international objectives in the peaceful uses of atomic energy.

Civilian Nuclear Power, a Report to the President by Glenn T Seaborg, Atomic Energy Commission, U.S.A. 1962

These ultra-safe reactors are nothing like the legacy reactors that make up today’s Light Water fleet (LWR). When deployed globally, many believe they will be the primary backbone of Green Energy – replacing the existing natural gas dispatchable power that makes up over 70% of the ‘balance-of-power’ in renewable systems.

Unfortunately, Seaborg’s plan died with Kennedy. The cold-war preference for uranium and plutonium over thorium in the 1960s and 70s, coupled with the 1980s modification to U.S. Nuclear Regulatory Committee (NRC) and International Atomic Energy Agency (IAEA) regulations that also impacted how thorium is classified and processed, led to the termination of the U.S. Thorium Molten Salt Reactor program and, effectively, the U.S. (French and Japanese) rare earth industry.

Today, China controls the downstream production of rare earth metals and magnets (used in EVs, Wind Turbines and U.S. / NATO weapon systems) and is boldly pursuing Glenn Seaborg’s plan for clean, safe energy. China’s nuclear regulatory authorities have cleared the 2MWt TMSR-LF1, China’s first Thorium Molten Salt Reactor (Th-MSR), for startup. There is no U.S. equivalent program on the horizon.

Considering that the U.S. initially developed this reactor, it begs the question of why China is leading with its commercial development. That requires a bit of a history lesson.

The goal of harnessing nuclear energy began shortly after World War II. At that time, a number of Manhattan Project scientists were tasked with quickly developing civilian nuclear power. One of the mission goals was to distribute the ongoing cost of producing bomb-making materials across our secretive Manhattan Project campuses onto a ‘civilian’ nuclear energy program. That program eventually morphed into the Atomic Energy Commission and then to the Department of Energy.

From an accounting standpoint, the DOE’s primary purpose was to divert the balance- sheet cost of our nuclear weapons programs off the military’s books.

For its entire history, 70% or more of the Department of Energy’s budget has been directed towards nuclear weapons development, maintenance, and research programs (and cleanup funding of legacy Manhattan Project sites). As the budget priorities demonstrate, solving America’s energy needs was never the first priority of the DoE. Accept that reality, and the long history of DoE mal-investment begins to make sense.

James Kennedy

Results came quickly. The first reactor designs, still in use today, are essentially ‘first concept reactors’: something more than a Ford Model T, but possibly less than a Model A, as economies of standardization were purposely never attempted in the USA, and therefore the USA never achieved the economies of scale that comes from making only 1 type of reactor model like the French and Japanese do.

The rollout of Thorium MSRs will be the equivalent of a modern-day automobile (with standardization of parts and licensing, automated assembly-line production and centralized operation permitting).

Every U.S. Light Water Reactor (LWR) facility is uniquely engineered from the ground up— maximizing its cost. Every permit application is unique. Permit requirements, timelines and outcomes are fluid. The timeline from initial funding for permitting to buildout can take decades. This equates to tying up tens of billions of dollars in financial commitments over a very long time for an uncertain outcome (a number of reactor projects were terminated during the buildout phase, with some near completion). There is an incentive to drag projects out because the EPC builders of the plan are not the operators, so they have to make all their money in the build. For example, the most recent U.S. nuclear buildout is 8 years behind schedule and at twice the estimated cost. This is a recipe for failure.

The original LWR designs, largely developed by Alvin Weinberg, boiled water under immense pressure to turn a shaft, similar to the turbines of a coal fired power plant. The use of water as a coolant is one of the largest contributors to LWR system complexity, risk and costs.

Water’s liquid phase range at normal pressure is 1 to 99°C. Water’s natural boiling temperature does not generate sufficient pressure to economically operate traditional steam turbines so all LWR type reactors use high pressure to force water to remain liquid at higher temperatures. The need to contain coolant failures in such a high-pressure operating environment greatly effects the safety and cost of the entire system. All water-cooled reactors have an inherent design risk, no matter how small, built in.

Weinberg knew there must be a better design, but government and military support rushed in to prop up the development of the Light Water Reactor design. Admiral Hyman Rickover was the leading advocate, quickly developing the first nuclear-powered submarine. The U.S. Army also got in the game, developing a prototype mobile field reactor. The Air Force, feeling left out, looked to Alvin Weinberg to develop a nuclear-powered aircraft.

The Air Force Reactor project required that he develop something entirely new; keeping in mind that this reactor would operate inside an airplane with a crew and live ordinance. These are truly remarkable constraints in terms of weight, size, safety, and power output. Weinberg’s insight led to a reactor that used a liquid fuel instead of solid fuel rods. It was simply known as Alvin’s 3P reactor, all he needed was a Pot, a Pipe and a Pump to build his new reactor design.

Elegant in its simplicity, its safety was based on physics and geometry – not pumps, values, backup generators and emergency protocols.

The Air Force Reactor program was able to prove out all requirements of the program. It was / is possible to build a nuclear-powered bomber aircraft and keep the crew ‘reasonably safe’. However, the development of nuclear-launch capable submarines and the Inter-Continental Ballistic Missile supplanted the need for a nuclear bomber.

The original Air Force Reactor Experiment evolved into the Molten Salt Reactor Experiment (MSRE) developed at Oak Ridge National Lab. This moderated reactor operated for 19,000 hours over 5 years. The reactor was designed to run on a Thorium-uranium mixed fuel. Prior to termination of the project, all operational, safety, material science, and corrosion issues were resolved.

More importantly, the MSRE project proved that you could build a revolutionary nuclear reactor that eliminated all of the inherent safety concerns of the LWR while minimizing the spent fuel issue (what some people call nuclear waste).

The new reactor, commonly known as a Molten Salt Reactor (MSR), used heated salt with a liquid-to-boil temperature range that can exceed 1000°C (a function of chemistry), to act both as coolant and fuel. The recirculation of the liquid fuel/coolant allowed for the fuller utilization (burn up) of the actinides and fission products. The salt’s higher temperature operation that did not need water for cooling, eliminated the need to operate under extreme pressures.

The Molten-Salt Reactor Experiment

This salt coolant cannot overheat, and meets the definition of having inherent safety – MSR’s are inherently safe reactors that eliminate scores of redundant systems, significantly increasing the simplicity of the overall system while lowering risks and cost and increasing its safety profile.

Another advantage is that MSR’s higher operating temperatures allow it to utilize liquid CO2 (or other high compression gases), thus eliminating H2O steam from the system. Moving away from the Rankine turbine system to much smaller and more efficient Brayton turbines delivers a much higher energy conversion at lower costs. The real promise of the MSR was that it produced process heat directly, for hydrogen, desalination, fertilizer, steel production – avoiding inefficient electricity production all while utilizing 100% of the heat energy directly.

Another beneficial feature is the reduced quantity and timeframe of storage requirements for spent fuel (aka: nuclear waste). Inherent to their design, MSRs use-up nuclear fuel far more efficiently than LWRs, less than 1% of the original fuel load can end up as spent fuel, and due to acceleration of decay under the recirculation of the fuel/coolant load the residual spent fuel decays to background (radiation levels equal to the natural environment) in as little as 300 years.

LWRs utilize about 3% of the available energy in solid fuels and the spent fuel does not decay to background levels for tens of thousands of years.

The most promising MSR design feature was found to be that fission criticality (a sustained chain reaction) is self-regulating due to the reactor’s geometry and self-purging features that dumped the fuel/coolant into holding tanks and regulated fission rates (again, based on geometry) if the reactor exceeded design operating temperatures. These features made a reactor “meltdown” impossible and “walk-away safe”.

Because the salt coolant has such a high liquid phase the system can be air cooled (in any atmosphere: the artic, the desert , even versions for space). The elimination of water from the system eliminates the primary failure-point of all conventional nuclear reactors, including explosive events that can occur with water cooled reactors.

NOTE: LWR reactor explosions are due to disassociation of water into hydrogen and oxygen when exposed to Zirconium at high temperatures during coolant system failure. The zirconium fuel casings act as a catalyst, causing a massive rapid atmospheric expansion. This atmospheric expansion was the cause of the explosive event associated with the Fukushima disaster.

The elimination of any high-pressure hydrogen event excludes the potential for widespread radiation release and thus, the need for a massive containment vessel.

Alvin Weinberg’s reactor design also solved another challenge of that time. Prior to the mid- 1970s the U.S. government believed that global uranium resources were very scarce. This new reactor, fueled with a small amount of fissile material added to the Thorium salt, could breed new fuel. In fact, it turned out that the reactor could also be used to dispose of weapons grade plutonium or even spent fuel (stockpiled nuclear waste).

ABSTRACT
The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power.

ORNL – Thorium MSRs From Using Dismantled Weapons, 1991

Unlike natural mined Uranium, which needed intensive processing to concentrate the fissile U235, Thorium is widely abundant and a byproduct of phosphate, titanium, zircon and rare earth ores. Thorium can be used in a nuclear reactor after minimal processing, all benefits that were unheeded in the 60s and 70s.

Since MSRs run at a much higher temperature than LWRs, the greatest benefit would be the direct utilization of thermal energy for industrial processes requiring thermal loads (allowing for the carbon free production of steel, cement and chemicals that make up nearly 25% of all CO2 emissions). Possibilities seemed endless.

Glenn Seaborg’s 1962 report to President Kennedy devised a national plan for sustainable civilian nuclear power. Evaluating the relative safety, efficiency, and economy of the Th-MSR vs. the LWR, Seaborg recommended that the U.S. phase out LWRs in favor of Alvin Weinberg’s Th- MSR Thorium “breeder reactor”.

So why didn’t this reactor design prevail? Considering its economic advantages, the Th-MSR would cause the phase out of the existing nuclear fleet and would be more cost competitive than coal or natural gas (and could replace petroleum via a nuclear-powered Fischer Tropes process), it is no wonder that the reactor was rejected by the prevailing political-economy of cold-war industrialism and what was primarily a hydro-carbon based economy.

The production cost for these reactors was a key concern. The relative cost of assembly line built MSRs reactor would be a fraction of traditional LWRs (these are small modular reactors). As such, MSRs could bring installed cost per megawatt in line with coal fired power plants.

The construction cost advantages are numerous: inherent safety based on geometry (translates into simplicity of design and construction), small, modular, assembly-line built, roll-off permitting, air cooled (eliminating the primary critical failure risk of LWRs and, thus the possibility for a wide-spread radiation event), no need for a massive containment vessel, and small Bryton turbines.

The Thorium fuel would be a byproduct of rare earths (no enrichment is necessary). Rare earths would be a byproduct of some other mined commodity.

Regardless of the economic opposition, there was also a geopolitical conflict. Fueled with Thorium, the MSR did not produce plutonium (fissile bomb making materials) or anything else that was practically usable for the production of nuclear weapons. The reactor was highly proliferation resistant—and who would not like that?

The Nixon Administration, for one. American politics in 1968 were largely influenced by the U.S.’s relative status in the nuclear weapons arms race with Russia. Nixon, a nuclear hawk, killed the MSR program and committed the country to the development of fast spectrum breeder reactors (the program was a total failure), circa 1972.

As early as 1970 a new, safe, clean, cost-efficient, and self-generating energy economy was technically possible but was sacrificed to the objectives of the cold war and preservation of the existing LWR fleet.

If the U.S. had followed Seaborg’s advice the entire world could be pulling up to the curb of Net-Zero today and U.S. energy hegemony would be preserved long into the future.

Instead, today, China is leading the world in the development of Thorium fueled reactors and Thorium based critical materials. They intend to use it as a geopolitical tool: the Chinese version of “Atoms for Peace”. This would end U.S. energy hegemony.

Sadly, most Americans can’t fathom how that would impact their standard of living and create a domestic energy source that would cement their position in the world.

But the story of how Thorium politics and policy derailed U.S. energy and national security interests does not end there.

The Story of Rare Earths

A decade later, the production and proliferation of nuclear weapons material became an international matter of concern. In 1980 the NRC and IAEA collaborated on regulations to ratchet down on the production and transportation of uranium. The regulatory mechanism 10 CFR 40, 75 applied the rules and definitions specific to the uranium mining industry to all mining activity, using the 1954 Atomic Energy Act terminology of nuclear “source material” to define the materials to be controlled.

Uranium, plutonium and Thorium are all classified as nuclear fuel: source material. However, Thorium cannot be used for nuclear weapons (Thorium is fertile, not fissile).

James Kennedy

This caused a new and unintended problem. At the time, nearly 100 percent of the world’s supply of heavy rare earths contained Thorium in their mineralization and were the byproduct of some other mined commodity. Consequently, when these commodity producers extracted their target ores (titanium, zirconium, iron, phosphates, etc.) they triggered the new regulatory definition of ‘processed or refined ore (under 10 CFR 40)’ for these historical rare earth byproducts, causing the Thorium-bearing rare earth mineralization to be classified as “source material”.

In order to avoid the onerous costs, regulations, and liabilities associated with being a source material producer these commodity producers disposed of these Thorium-bearing resources along with their other mining waste and continue to do so today.

Currently, in the U.S. alone, the annual quantity of rare earths disposed of to avoid the NRC source material regulations exceeds the non-Chinese world’s demand by a factor of two or more. The amount of Thorium that is also disposed of with these rare earths could power the entire western hemisphere if utilized in MSRs.

The scale of this potential energy waste dwarfs the collective efforts of every environmentalist on a global basis (including all of the World Economic Forum programs being forced on farmers and consumers across the globe).

As a result, all downstream rare earth value chain companies in the U.S. and IAEA compliant countries lost access to reliable supplies for these rare earth resources.

Capitalizing on these regulatory changes, China quickly became the world’s RE producer.

World Rare Earth Production

During the 1980s, China increased its leverage by initiating tax incentives and creating economically favorable manufacturing zones for companies that moved rare earth technology inside China.

U.S., French and Japanese companies were happy to off-shore their technology and environmental risks (mostly related to Thorium regulations). The 1980 regulatory change and China’s aggressive investment policies allowed China to quickly acquire a foothold in metallurgical and magnet capabilities.

For example: China signed rare earth supply contracts with Japan that required Japan to transfer rare earth machinery and process technology to mainland China while establishing state-sponsored acquisition strategies for targeted U.S. metallurgical and magnetic manufacturing technologies.

By 1995 the U.S. had sold its only NdFeB magnet producer, and all of its IP, to what turned out to be Deng Xiaoping’s family.

In just two decades China moved from a low value resource producer to having monopoly control over global production and access to rare earth technology metals.

By 2002 the U.S. became 100% dependent on China for all post-oxide rare earth materials. Today, China’s monopoly is concentrated on downstream metallics and magnets. In 2018, Japan, the only country that continued to produce rare earth metals outside of China, informed the U.S. government that they no longer make “new” rare earth metals.

Japan stated the reason for terminating all new rare earth metal production is “China controls price”.

Thorium policy was the leading culprit in America’s failure to lead the world in the evolution of the rare earth dependent technologies. From its powerful vantage point, China was able to force technology companies to move operations inside China. From a practical standpoint all past and future breakthroughs in rare earth based material science and technology migrate to China.

Cumulative Patent Deficit USD vs China
Cumulative Patent Deficit USD vs China

The best example of this is Apple. Because the iPhone is highly rare earth dependent, Apple was forced to manufacture it in China. In January 2007 Apple introduced its revolutionary iPhone. By August of the same year high quality Chinese knockoffs were being produced by a largely unknown company named Huawei. By 2017 Huawei was outselling Apple on a worldwide basis.

This story is not uncommon. It is typical of what happens to Western companies who move manufacturing inside China. Apple knew this but had no choice: developing a domestic rare earth value chain was impossible for any single company, industry, or even country by this point in the game.

Today China’s monopoly power allows them to control the supply chain of the U.S. military and NATO defense contractors.

From its diminished vantage point, the Pentagon is somehow unable to understand that China’s monopoly is a National Program of Industrial and Defense Policy.

Instead, the Pentagon pretends that this is a problem that can be solved by ‘the free market’, naively betting U.S. national security on a hodgepodge of junior rare earth mining ventures with economically questionable deposits, no downstream metal refining capabilities and no access to the critical heavy rare earths.

The Pentagon twice bet our national security on a geochemically incompatible deposit in California. The first time was in 2010. The Pentagon was forewarned that the deposit controlled by Molycorp, was incompatible with U.S. technology and defense needs, due to its lack of heavy rare earths, and that its business plan was “unworkable”. The company was bankrupt in just 5 years.

In 2020, despite the same deposit’s intractable deficiencies, Chinese ownership and a commitment to supply China, the Pentagon backed a venture capital group ‘developing’ the deposit under the name MP Materials. The new company has made the same unfulfillable promises as its predecessor but further domestic downstream capability into metallics is unlikely.

MP may remain profitable as long as it continues to sell concentrate and oxides into China, but profitable downstream refining into metallics / magnets is not possible when accounting for China’s internal cost, scale and subsidy advantages (and control over price).

The Pentagon, like so many other investors, fails to accept the reality of China’s monopoly.

It is both an economic monopoly, and a geopolitical monopoly.

Consequently, there have been over 400 bankruptcies in rare earth projects since 2010. Only two western controlled rare earth mines went into production: Molycorp, mentioned above, and Lynas, the Australian company Lynas. Lynas’s success is mostly due the current environment of higher prices (ultimately under China’s control) and a modestly superior rare earth chemistry when compared with the Molycorp Mt. Pass deposit. Lynas survived the 2015 downturn through direct subsidies form the Japanese government, price supports and debt forgiveness from its customers and investors.

Today the U.S. and all western governments find themselves outmaneuvered in rare earths (and other critical materials), the green economy and Thorium nuclear energy.

China is leading the world in the development of Thorium MSRs. Their first two-megawatt prototype reactors was recently cleared for startup (August, 2022). China’s MSR program was built on massive direct investment by the Chinese government and the direct transfer of technology and technical support by the U.S. Department of Energy.

China’s first to market strategy can be expected to conform to their tendency to vertically and horizontally monopolize industries, like rare earths. As such, China is poised to control the global roll out of this technology—displacing the U.S. as the global energy hegemon.

Because the U.S. failed to rationalize Thorium policy it has lost control of its destiny in rare earths and the future of safe, clean, affordable, and sustainable nuclear energy.

Unchallenged, China will be the global champion of net-zero energy.

What are the domestic obstacle to achieving Thorium MSR?

Opposition is directly linked to the cold war policies of the past and the intersection of legacy energy producers (LWR nuclear, coal, natural gas and petroleum) and renewable energy producers. These energy sectors individually and collectively are the political constituents of the DoE. So, despite the opposing interests between each of these energy sectors, the threat of Th-MSR expresses itself as DoE opposition (that is beginning to change).

The other problem with Th-MSR development is the regulatory environment. Regulations are more about protecting legacy interests than public safety. In nuclear regulation it is all about protecting the legacy fleet from new entrants.

For example, the company Nuscale spent over $600 million, over a decade, to certify a new nuclear reactor design. This expense was not to build a reactor. It was the regulatory cost of permitting a new reactor design that (highly conforms to existing LWR designs).

What people overlook is that the real cost and risk in new reactor design is a function of time, money and investor expectations.

In the case of Nuscale, the regulatory and construction cost of a new reactor will be in the multi-billion-dollar range, with over a decade of investor money tied up in the highly speculative investment (speculative in regulatory outcomes and customer orders against existing and alternative technologies) makes this the highest investment risk imaginable.

Accounting for the magnitude of these risks and return expectations, this type of investment is at the outer bounds of what is achievable — in the absence of a monopoly. That is why public investment was always necessary in the nuclear industry. China understands this and has acted accordingly.

What are the domestic obstacles to a domestic rare earth value chain?

The current rare earth issue has not been a mining issue but rather a regulatory issue. The U.S. continues to mine enough rare earths, as the byproduct of some other commodity, to exceed the entire non-Chinese world demand. These resources would quickly become available if the U.S. rationalized its Thorium policy.

The larger downstream problems resulting from China’s massive overinvestment and negligible return requirements in its rare earth industry have yet to express themselves, as the U.S. government blindly funds non-compatible, non-viable, non-economic downstream projects.

Without a production tax credit to off-set Chinese subsides, all of these projects will fail.

Balancing the comparative cost of capital and investor return expectation also must be answered.

Solutions

There are potential solutions. For rare earths there is a production tax credit bill that could off- set China’s generous subsidies, zero-cost capital and production cost advantages (comparative labor & environmental costs). There may also soon be proposed legislation to solve the Thorium problem. This same proposal would also provide a funding and development platform for a U.S. based Thorium MSR reactor industry.

There are solutions, but time is running out.


To learn more about advancing U.S. interests in the development of MSRs and ending China’s rare earth monopoly please visit the ThoriumEnergyAlliance.com or ThREEConsulting.com.


Authors

James Kennedy is an internationally recognized expert, consultant, author, and policy adviser on rare earths and Thorium energy.

John Kutsch is the executive director of Thorium Energy Alliance, an organization dedicated to the advancement of Thorium for power and critical materials applications.


References and Links

  1. http://threeconsulting.com/
  2. https://www.linkedin.com/in/james-kennedy-5622bb50/
  3. https://thoriumenergyalliance.com/
  4. https://www.linkedin.com/in/kutschenergy/
  5. https://www.linkedin.com/pulse/how-us-policy-shifted-energy-technology-hegemony-china-james-kennedy/
  6. https://www.politico.com/news/2022/09/07/pentagon-suspends-f-35-deliveries-china-00055202
  7. https://en.wikipedia.org/wiki/Glenn_T._Seaborg
  8. https://pastdaily.com/2018/10/29/october-29-1961-dr-glenn-seaborg-has-a-word-or-two-about-nuclear-energy-meet-the-press-past-daily-reference-room/
  9. https://www.osti.gov/servlets/purl/1212086
  10. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
  11. https://www.augustachronicle.com/story/news/2021/11/04/georgia-power-nuclear-reactors-plant-vogtle-cost-doubles-energy-costs/6286729001/
  12. https://en.wikipedia.org/wiki/Hyman_G._Rickover
  13. https://energyeducation.ca/encyclopedia/Aircraft_reactor_experiment
  14. https://en.wikipedia.org/wiki/Molten-Salt_Reactor_Experiment
  15. https://www.youtube.com/watch?v=tyDbq5HRs0o
  16. https://www.nuclear-power.com/nuclear-engineering/thermodynamics/thermodynamic-cycles/rankine-cycle-steam-turbine-cycle/
  17. https://www.energy.gov/ne/articles/sandia-researchers-deliver-power-grid-new-brayton-cycle-technology
  18. https://threeconsulting.com/mt-content/uploads/2021/04/th_msrs_heufrom_dismantled_weapons.pdf
  19. https://web.archive.org/web/20151107033818/https:/inldigitallibrary.inl.gov/sti/2664750.pdf
  20. https://www.nrc.gov/reading-rm/doc-collections/cfr/part075/index.html
  21. https://threeconsulting.com/mt-content/uploads/2021/04/chiarepatent.pdf
  22. https://en.wikipedia.org/wiki/Deng_Xiaoping
  23. https://www.congress.gov/115/crpt/hrpt676/CRPT-115hrpt676.pdf
  24. https://threeconsulting.com/mt-content/uploads/2021/04/sme-rareearthsdeceptionwebv.pdf
  25. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
  26. https://www.nextbigfuture.com/2022/08/chinas-2-megawatt-molten-salt-thorium-nuclear-reactor-has-start-up-approval.html
  27. https://threeconsulting.com/mt-content/uploads/2021/04/casdoetech.pdf
  28. https://www.congress.gov/bill/117th-congress/house-bill/5033/text?r=164&s=1

#rareearths #nuclearenergy #nationalsecurity #nationaldefense #china #criticalminerals #departmentofenergy #departmentofdefense #EV #netzero #netzerocarbon #greentech #geopolitics #renewableenergy #cobalt #nickel #graphite #lithium #weapons #defensetechnology #mining #miningindustry #miningnews #greensteel #neodymium #terbium #pentagon #hegemony #monopoly #intellectualproperty #windenergy #solarenergy #hydrogen #thorium #thoriumenergyallianc #energy #scienceandtechnology #aviationindustry #aviationnews #airforce

Episode 14 – What’s up Doc? Tremors from Fukushima – Unintended Consequences – Chapter 6 Part 2

Operation Tomodachi View on USS Reagan

Japan responded [to the 2011 Tōhoku earthquake] by closing its nuclear plants – a foolish move that has required the country to spend USD 40 billion per year on liquefied natural gas plus billions more for coal, which has created huge amounts of greenhouse gases. Another USD 11 billion per year has been spent to maintain their perfectly functional-but-idle reactors.

Nuclear power has been tarred by the Fukushima Daichi disaster, but the failure was NOT the fault of nuclear power. It was caused by repeated corporate lying, record falsifying and penny-pinching, by the lack of government enforcement of seawall height, by building too low to the ocean, and by installing backup generators in easily flooded basements.

Blaming nuclear power for Fukushima is like blaming the train when an engineer derails it by taking a turn at 70 mph that is posted for 30. (The Japanese Diet has stated that the Fukushima accident was not the fault of “nuclear power.”)

Blaming nuclear power for Fukushima is like blaming the train when an engineer derails it by taking a turn at 70 mph that is posted for 30. (The Japanese Diet has stated that the Fukushima accident was not the fault of “nuclear power.”)

In 2015, the usually reliable Amy Goodman [Democracy Now!] reported that a class action suit had been filed by several sailors who had served on the USS REAGAN. In her article, she described their symptoms, which they blamed on being exposed to radiation, but she failed to provide any depth.

Warning – A Rubbish Introduction: Fukushima “Death Cloud” Kills hundreds on US Warship

A few days later, Goodman’s article was read by Captain Reid Tanaka, a United States Navy professional with considerable expertise in nuclear matters who had been intimately involved during the meltdown – and Captain Tanaka presented a very different view:

“I was in Japan, in the Navy, when the tsunami struck and because of my nuclear training, I was called to assist in the reactor accident response and served as a key adviser to the US military forces commander and the US Ambassador to Japan. I spent a year in Tokyo with the US NRC-led team to assist TEPCO and the Japanese Government in battling through the casualty.

“My command (CTF 70) was the direct reporting command for the REAGAN (where we had control over REAGAN’S assignments and missions) and were in direct decision-making with REAGAN’S Commanding Officer and team. I don’t qualify to be called an “expert” in reactor accidents…, but I am well informed enough to know where my limits are and to see through much of the distortions on this issue….

“A Google search will tend to drive people to alarmist websites and non-technical news reports, but you could also find the dull, technical (yet truthful) places such as the IAEA or DOE…

“Numerous bodies of experts have weighed in and provided assessments and reports. A couple are quite critical of TEPCO and the Japanese nuclear industry and regulators.

Operation Tomodachi On Reagan

“… the biggest problem the public has is … being able to distinguish the science-based, objective reports from the alarmist and emotionally charged positions that get the attention of the press, some of whom are self- proclaimed experts in some fields but NOT nuclear power: Dr. David Suzuki and Dr. Michio Kaku. Neither understand spent fuel, nor the condition of spent fuel pools….

“Dr. Suzuki is an award-winning scientist and a champion for the environment, but he is lacking any real understanding of spent fuel or radioactivity. “Bye-bye Japan?’ A headline grabbing sound-bite, but the math just doesn’t work…

“[Sometimes] the true experts cannot give a simple answer because there isn’t one, while those who have no science to back their claims have no compunction in saying the sky is falling and everyone else is lying.

“For the Navy, the contamination caused by Fukushima created a huge amount of extra work and costs for decontaminating the ships and our aircraft to ‘zero’, but [there was] no risk to the health of our people.

“REAGAN was about 100 miles from Fukushima when the radiation alarms first alerted us to the Fukushima accident. Navy nuclear ships have low-level radiation alarms to alert us of a potential problem with our onboard reactors. So, when the airborne alarms were received, we were quite surprised and concerned. The levels of contamination were small, but they caused a great deal of additional evaluation and work. REAGAN’s movements were planned and made to avoid additional fallout. Sailors who believe they were within five miles or so, were misinformed. Japanese ships were close; the REAGAN was not….

“There are former sailors who are engaged in a class-action suit against TEPCO for radiation sickness they are suffering for the exposure they received from Operation Tomodachi. The lead plaintiffs were originally sailors from REAGAN but now have expanded to a few other sailors from other ships. Looking at the claims, I have no doubt some of the SAILORS have some ailments, but without any real supporting information (I haven’t seen ANY credible information to that end), I do not believe any of their ailments can be attributable to radiation—fear and stress related, perhaps, but not radiation directly. Radiation sickness occurs within a ‘minutes/hours’ time frame of exposure and cancer occurs in a ‘years’ time frame. These sailors were not sick in either of these windows. I believe that many of them believe it, but I also believe most are being misled.”

Why Operation Tomodachi worked like clockwork

May, 2020, – U S Court Rejects Sailors’ Lawsuit

The closure of Japan’s nuclear plants and its increased use of imported liquefied natural gas put an end to Japan’s long-standing trade surplus. But in 2015, bowing to financial realities and because of diminishing fear, Japan restarted the second of its reactors. As of May, 2018, seven reactors had been restarted, with many scheduled to follow.

Shortly thereafter, the U. S. media and many of the “Green” organizations began to report that a Fukushima worker had been “awarded compensation and official acknowledgment that his cancer [leukemia] was caused by working in the reactor disaster zone.” That’s wrong, and competent journalists who do adequate research should know it. Here are the facts:

The worker received a workman’s comp benefit package because he satisfied the statutory criteria stipulated in the 1976 Industrial Accident Compensation Insurance Act, which says that workers who are injured or become ill while working or while commuting to and from work, can receive financial aid and medical coverage. The worker spent 14 months at F. Daiichi. (October, 2012 to December 2013.)

In late December 2013, the worker felt too ill to work, so he went to a doctor, and was diagnosed with acute leukaemia in January, 2014. No link was made between his occupational exposure and his cancer. In addition, because the latency period between radiation exposure and the onset of leukaemia is 5 to 7 years, the worker did not get cancer from working at Fukushima. It was, in fact, a pre-existing condition that was exploited by opponents of nuclear power who routinely repeat convenient-but-wrong stories because being honest and accurate takes time, knowledge and integrity.

In 2016, anti-nuclear zealots began to fear-monger about the effects of Cesium-134 on fish while ignoring reports from NOAA and the Japanese government that stated, “Radioactive Cesium in fish caught near Fukushima Daiichi continues to dwindle. Of the more than 70 specimens taken in October, only five showed any Caesium isotope 134, the ‘fingerprint’ for Fukushima Daiichi contamination. The highest Cs-134 concentration was [associated] with a Banded Dogfish, at 8.3 Becquerels per kilogram. Half of the sampled fish had detectable levels of Cs-137, but all were well below Japan’s limit of 100 Bq/kg….”

These amounts are tiny, and the particles emitted from the Potassium-40, which we all contain, are more potent than the Caesium-137 emissions that many greens apparently fear.

There is 500,000 times more natural radiation in the ocean than the amount added by Fukushima.

Regarding the risk from remaining reactor material that many greens agonize over, Dr. Alex Cannara subsequently wrote,

“As of late 2013, the spent fuel at Fukushima was 30 months old. That means that the rods and the fuel pellets within them are able to be stored in air. If any rods had never been in a reactor core, they have no fission products in them and are perfectly safe to take apart by hand.

“So, what do we have at Fukushima? We have some melted core materials (corium), which can be entombed. We have water containing a small amount of fission products like Cesium. And, we have a bunch of fuel assemblies that are very radioactive because of their internal creation of fission products when they were in their reactor cores. (No fission products are created when rods are out of cores, in pools or dry air storage.)

“Since the rods are at least 30 months out of fission-product production [2013], one can see how quickly they’ve lost the need for cooling and the reduction in their radioactivity.

“Nuclear power has for its entire life, been the safest form of power generation. The EPA estimates that we lose more than 12,000 Americans every year to coal emissions. The Chinese lose 700,000, and the Indians, 100,000. To delay building nuclear power plants will cause diseases and deaths that could easily be avoided.”

Nuclear power is the safest way to generate electricity.

World Health Organisation

“A nuclear power plant that melts down is less dangerous than a fossil fuel plant that is working correctly. [Because of their toxic ashes and emissions.] Fukushima illustrates that even a meltdown that penetrates containment is very little danger to the public when a few basic precautions are taken.” Andrew Daniels, author, “After Fukushima What We Now Know”.

Titans of Nuclear – Andrew Daniels, Author, After Fukushima Sep 27, 2018

A nuclear power plant that melts down is less dangerous than a fossil fuel plant that is working correctly.

Andrew Daniels

How Fukushima Made Me a Nukie, Eric Schmitz on March 28th, 2017


Colin Megson on Future Nuclear Energy & The Madness Of Renewables

“Not 1 in 10,000 people have any concept of the huge amount of 24/7, low-carbon electricity a nuclear power plant can deliver compared to the intermittent dribble provided by the renewables.”

Colin Megson

Every year, U.S., nuclear-generated electricity prevents more than 500 million tons of carbon dioxide from entering our atmosphere – Wall Street Journal

Only Nuclear Energy Can Save the Planet, Wall Street Journal, Joshua S. Goldstein and Staffan A. Qvist Jan. 11, 2019

Is nuclear energy the key to saving the planet?, High Country News, about Emma Redfoot by Jonathan Thompson

Nuclear Power in a Clean Energy System, IEA, Fuel Report, May 2019

5 Things Everyone Should Know About Nuclear, David de Caires Watson, Dec 11, 2019


Coming up next week, Episode 15 – Clean Air and Water? Not with Fossil Fuels Around – Death by Fossil

Links and References

1. Next Episode 15 – Clean Air and Water? Not With Fossil Fuels Around – Death by Fossil
2. Previous Episode – Episode 13 – What’s so Great about Nuclear Power?
3. Launching the Unintended Consequences Series
4. Dr. George Erickson on LinkedIn
5. Dr. George Erickson’s Website, Tundracub.com
6. The full pdf version of Unintended Consequences
7. https://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami
8. https://en.wikipedia.org/wiki/Amy_Goodman
9. https://www.democracynow.org/
10. https://en.wikipedia.org/wiki/USS_Ronald_Reagan
11. https://thebreakthrough.org/issues/energy/uss-reagan-sailors-lawsuit-found-lacking
12. https://www.forbes.com/sites/jamesconca/2020/05/28/american-sailors-lawsuit-against-japanese-over-fukushima-radiation-rejected-by-us-appeals-court/
13. https://www.linkedin.com/in/reid-tanaka-b212751b/
14. https://www.nvcfoundation.org/newsletter/2008/3/captain-tanaka–first-japanese-american-commander-of-a-navy-submarine-base/
15. https://www.vice.com/en/article/gq8gbm/these-nuclear-physicists-think-david-suzuki-is-exaggerating-about-fukushima
16. https://en.wikipedia.org/wiki/David_Suzuki
17. https://www.nippon.com/en/japan-data/h00967/
18. http://www.noaa.gov/
19. https://www.linkedin.com/in/alex-cannara-6a1b7a3/
20. https://www.asahi.com/ajw/articles/14245903
21. https://twitter.com/After_Fukushima
22. https://www.instagram.com/andrewsdaniels/
23. https://www.amazon.com/After-Fukushima-History-Nuclear-Radiation-ebook/dp/B01LC8489M
24. https://nuclearprogress.org/how-fukushima-made-me-a-nukie/
25. https://mobile.twitter.com/moonbatnukie
26. https://www.youtube.com/watch?v=ocBGxMnpQ9g
27. https://www.facebook.com/cwm66
28. https://www.wsj.com/articles/only-nuclear-energy-can-save-the-planet-11547225861
29. https://www.hcn.org/issues/50.21/nuclear-energy-a-new-generation-of-environmentalists-is-learning-to-stop-worrying-and-love-nuclear-power
30. https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system
31. https://medium.com/generation-atomic/5-things-everyone-should-know-about-nuclear-64e73ff27c98
32. https://www.linkedin.com/in/josh-goldstein-0ab013204/
33. https://www.linkedin.com/in/staffanq/
34. https://www.linkedin.com/in/emma-redfoot-4121685b/
35. https://twitter.com/EmmaRedfoot
36. https://www.titansofnuclear.com/experts/EmmaRedfoot
37. https://www.hcn.org/voices/jonathan-thompson
38. https://twitter.com/jonnypeace
39. https://www.linkedin.com/in/davidjohnwatson/
40. https://twitter.com/ecopragmatist
41. http://www.sarahcraigmedia.com/

#UnintendedConsequences #GeorgeErickson #FissionEnergy #NuclearEnergy #Fukushima #airpollution #USSReagan #OperationTomodachi