A Passion for Rare Earth Elements and Thorium? Want to break a Global Monopoly? We Are Doing It.

Roshni, Rare Earths and Mountains
Plasma Assisted Digestion(TM) - Digestion Stage, post plasma
Plasma Assisted Digestion(TM) – Digestion Stage, post plasma

2023 marks a huge milestone for The Thorium Network and our division the International Plasma Research InstituteTM, or IPRITM. We successfully serviced a number of clients and cracked their inert materials using Plasma Assisted DigestionTM, PADTM.

We did this at indicative costs and time much less than industry standards. Indeed, one client gave us material they are unable to recover anything from. We obtained almost 80% of the precious Rare Earths from the material. That’s case study 3 below.

Here are the summaries of three case studies from some of our work in 2023:

IPRI PAD(TM) Cracking Case Study 1
IPRI PAD(TM) Cracking Case Study 1
IPRI PAD(TM) Cracking Case Study 2
IPRI PAD(TM) Cracking Case Study 2
IPRI PAD(TM) Cracking Case Study 3

Why Plasma to make Rare Earths and Thorium

Our plasma team is the best in the world, covering the United Kingdom, the Middle East, Russia and USA.

Using a proprietary configuration of gases, geometry and plasma, at IPRITM we are able to change the structure of a mineral matrix such that we crack a normally locked, tight crystal mineral lattice, such as monazite or apatite. This makes them quite accessible using mild liquid separation technologies.

The benefit are:

  • Removal of Naturally Occurring Radioactive Materials (NORMS) early from the process. This makes at-mine pre-processing possible before sending off for concentration.
  • Selective separation of element species using different wet conditions by adjusting temperature, pH and time.
  • Separation of low value rare earths, such as cerium, from high value rare earths in minutes.

We are excited by the potential to apply PADTM to other inert mineral structures to explore their viability also.

Here are some research papers from Necsa on Plasma technology that prove the technology.


Separation of Rare Earth Elements

Typical separation of rare earth elements is a capital intensive and expensive operation. With our partners we have PertraXTM. At a fraction of the cost of tradition solvent extraction technologies PertraXTM is able to safely separate rare earths with the smallest of environmental footprints with only a fraction of the hardware and consumables traditionally used. It’s a revolution in rare earth production.

PertraXTM is also part of our activities at IPRITM.

Plasma at Work with Zircon

Expanding Operations in 2023

During 2023, the esteemed and highly experienced scientist Dr. Necdet Aslan joined us at IPRI.tech. Dr. Aslan is Türkiye’s expert in plasma physics and technology and professor at Yeditepe University, Istanbul, Türkiye.

As we move into the future we are excited by the prospects we have to expand our activities. Reach out to us here if you would like to join our illustrious team.

About The Thorium Network

Our objective at The Thorium Network is to Accelerate the Worldwide Adoption of Liquid Fission Thorium Energy. We do that through three main activities:

1) We strive for easy access to Thorium as a fission fuel and focus on Liquid Fission – its technical superiority is unrivalled. The track and trace of nuclear fuels provides a solution for countries to go nuclear faster. Less headaches. This is done in full compliance with international guidelines and country regulations;

2) Raising public awareness to the benefits of Fission. As well as being an innovator of supply chain logistics we are also a public relations group as as advocate Fission Energy;

3) Driving licensing and installation of Fission machines across the world, using our network and access within the industry. For this we include all advanced fission technology, as well of course, Liquid Fission Thorium Burners (LFTBs).

Social Media

Follow us at on our social media:

References and Links

  1. The website of IPRI.tech
  2. First PADTM and IPRITM announcement https://www.linkedin.com/feed/update/urn:li:activity:7021353696244420608
  3. https://smi.uq.edu.au/jkmrc-research
  4. https://www.linkedin.com/in/necdetaslan/
  5. https://www.linkedin.com/feed/update/urn:li:activity:7135939867191988225

Tags

#GotThorium #Fission4All #RadiationIsGood4U #NuclearEnergy #Plasma #MineralsProcessing #IPRI #PAD #PertraX

An Engineers’​ Point of View on Thorium: Unwrapping the Conspiracy

Female Nuclear Engineering Student

Preface

I have written this article exclusively for The Thorium Network(1) on the basis that I remain anonymous – my livelihood depends on it. I completed my nuclear engineering degree in the late 2000’s and shortly thereafter found a position in a semi-government owned nuclear power station – with several PWRs to look after. One year after graduating and commencing my professional career, I discovered the work of Dr. Alvin Weinberg(2) and began conducting my own research.

My anonymity is predicated on my experience during this time of intense study and learning. As a young female graduate when I shared my enthusiasm for this technology I faced harassment and derision from my male colleagues, from high level government officials and also, unfortunately, from my university professors, whom I initially turned to for help. It wasn’t long before I started to keep my research and my thoughts to myself.

I have found Women In Nuclear(3) to be most supportive and conducive to fostering and maintaining my interest in this technology, though even there it remains a “secret subject”.

So when I discovered The Thorium Network(1), I decided it was a good platform to tell my story. I look forward to the time when there is an industry strong enough to support engineers like me full time, so we can leave our positions in the old technology and embrace the new.

My Studies – No Thorium?

As a nuclear engineer, I was trained to understand the intricacies of nuclear reactions and the ways in which nuclear power could be harnessed for the betterment of humanity.

During my time in university, I learned about various types of reactors, including pressurized water reactors, boiling water reactors, and fast breeder reactors.

Phew!

However, one type of technology that was never mentioned in my coursework was the Thorium Molten Salt Burner (TMSB). Or “Thorium Burner” as my friends like to say. “TBs” for short. I like it too. Throughout my article I also refrain from using traditional words and descriptions. The nuclear industry must change and we can start by using new words.

Shortly after graduating I stumbled upon information about TBs from the work of the famous chemist and nuclear physicist, Dr. Alvin Weinberg(2). TBs have enormous potential and are the future of nuclear energy. I can say that without a doubt. I was immediately struck by the impressive advantages that TBs offer compared to the technologies that I had learned about in school. I found myself wondering why this technology had not been discussed in any of my classes and why it seemed to be so overlooked in the mainstream discourse surrounding nuclear energy and in particular in today’s heated debates on climate change.

What are TBs – Thorium Burners

To understand the reasons behind the lack of knowledge and recognition of TBs, it is first important to understand what exactly TBs are and how they differ from other types of fission technologies. TBs are a type of fission device that use Thorium as a fuel source, instead of the more commonly used uranium or plutonium. The fuel is dissolved in a liquid salt mixture*, which acts as the fuel, the coolant and the heat transfer medium for taking away the heat energy to do useful work, like spin a turbine to make electricity, or keep an aluminum smelter bath hot**. This design allows for a number of benefits that old nuclear technology does not offer.

*A little tip: the salt is not corrosive. Remember, our blood is salty but we don’t rust away do we.

** I mention aluminum smelting because it too uses a high fluorine based salt – similar to what TBs use. And aluminum is the most commonly used metal on our planet. You can see more on this process here: Aluminum Smelting(4)

Advantages of TBs

One of the most significant advantages of TBs is their inherent safety. They are “walk away safe”. Because the liquid fuel is continuously circulating, and already in a molten state, there is no possibility of a meltdown. If the core region tries to overheat the liquid fuel will simply expand and this automatically shuts down the heating process. This is known as Doppler Broadening(5).

Additionally, the liquid fuel is not pressurized, removing any explosion risk. It just goes “plop”.

These physical features make TBs much safer than traditional machines, which require complex safety systems to prevent accidents. Don’t misunderstand me, these safety systems are very good (there has never been a major incident in the nuclear industry from the failure of a safety system), but the more links you have in a chain the more chances you have of a failure. TBs go the other way, reducing links and making them safer by the laws of physics, not by the laws of man.

Another advantage of TBs is their fuel utilization. Traditional machines typically only use about 3% of their fuel before it must be replaced. In contrast, TBs are able to use 99.9% of their fuel, resulting in effectively no waste and a much longer fuel cycle (30 years in some designs). This not only makes TBs more environmentally friendly – how much less digging is needed to make fuel – but it also makes them more cost-effective.

TBs are also more efficient than traditional machines. They are capable of operating at higher temperatures (above 650 degrees C), which results in increased thermal efficiency and a higher output of electricity per unit of fuel. This increased efficiency means that TBs require even less fuel to produce the same amount of energy, making them even more a sustainable option for meeting our energy needs.

The Conspiracy

Ever wonder why all the recent “conspiracy theories” have proven to be true? It looks like Thorium is another one. It’s just been going on for a long, long time.

So why, then, was I never taught about TBs in university? The answer to this question is complex and multi-faceted, but can all be traced back to one motive: Profit. The main factor that has contributed to the lack of recognition and support for TBs is the influence of the oil and fossil fuel industries. These industries have a vested interest in maintaining the status quo to preserve their profits. They have used their massive wealth and power to lobby against the development of competitive energy sources like TBs. Fossil fuel companies have poured billions of money into political campaigns and swayed public opinion through their control of the media. This has made it difficult for TBs to receive the funding and recognition they need to advance, as the fossil fuel industries work to maintain their dominance in the energy sector.

First Hand Knowledge – Visiting Oak Ridge

During my research I took a trip to Oak Ridge National Laboratory in Tennessee, where the first experimental Thorium Burner, the MSRE – the Molten Salt Reactor Experiment – was built and operated in the 1960s. During my visit, I had the chance to speak with some of the researchers and engineers who had worked on the MSRE – yes some are still around. It was amazing to speak with them. I learnt first hand about the history of TBs and their huge potential that they have. I also learnt how simple and safe they are. They called the experiment “the most predictable and the most boring”. It did everything they calculated it would do. That’s a good thing!

The stories I heard from the researchers and engineers who worked on the MSRE were inspiring but also concerning. They spoke of the tremendous potential they saw in TBs and the promise that this technology holds for the future of meeting world energy demands. They also spoke of the political and funding challenges that they experienced first hand. The obstacles that prevented TBs from receiving the recognition and support they needed to advance. They were told directly to destroy all evidence of their work on the technology when Dr. Alvin Weinberg was fired as their director in 1972 and the molten salt program shut down. This was done under Nixon’s watch. You can even hear Nixon do this here on this YouTube(6) clip. Keep it “close to the chest” he says. I am surprised that this video is still up on YouTube considering the censorship we’ve been experiencing in this country in the past few years.

1971 Nixon Phone Call – Nixon Speech on Jobs in California – TR2016a

The experiences at Oak Ridge confirmed to me that TBs are a promising and innovative technology that have been marginalized and overlooked clearly on purpose. On purpose to protect profits of other industries. It was inspiring to hear about the dedication and passion of the researchers and engineers who worked on the MSRE, and it reinforced my belief in the potential of TBs to play a major role in meeting our energy needs in a sustainable and safe manner. I am hopeful that, with increased investment and support, TBs will one day receive the recognition and support they deserve, and that they will play a significant role in shaping the future of energy.

Moving On – What is Needed

Despite the challenges, I believe that TBs have a promising future in the world of energy from the Atom. They offer a number of unique benefits that can clearly address the any minor concerns surrounding traditional nuclear energy machines, such as safety and waste management. They are also the answer for world energy.

Countering the Vested Interests – Education and Awareness

In order for TBs to become a more widely recognized and accepted technology, more funding – both public and private – is needed to revamp the research and development conducted in the 1950’s and 1960’s. Additionally, education and awareness about the potential of TBs must be raised, in order to dispel any misconceptions and address the stigma that still surrounds nuclear energy, and to counter the efforts that are still going on even today, to stymie TBs from becoming commercial.

In order to ensure that TBs receive the support they need to succeed, it is necessary to counter the influence of the oil and fossil fuel industries and to create a level playing field for competitive energy sources. This will require a concerted effort from the public, policymakers, and the private sector to invest in and promote the development of TBs.

Retiring Aging Assets and Funding New Ones

There’s also another factor that also needs to be addressed the same way as the oil and fossil fuel industries and that is the existing industry itself. The nuclear industry has long been dominated by a few large companies, and these companies have a vested interest in maintaining the status quo and investing in traditional reactor technology. This includes funding universities to train people such as myself. This has made it difficult for TBs to gain traction and receive the funding they need to advance.

An Industry Spawned: Non Linear Threshold (LNT) and As Low As Reasonably Achievable (ALARA)

A third reason is the prodigious amount of money to be made in maintaining the apparent safety of the existing nuclear industry. This was something else I was not taught in school – about how fraudulent science using fruit flies was railroaded by the oil industry (specifically the Rockefellers) to create a cost increasing environment for the nuclear industry to prevent smaller and smaller amounts of radiation exposure. Professor Edward Calabrese(7) taught me the most about this. You must watch his interviews.

What has grown from this is a radiation safety industry – and hence a profit base – with a life of it’s own. I see it every single working day. It holds tightly to the vein that radiation must at all costs (and all profits) be kept out of the public domain. Again a proven flawed premise but thoroughly supported by the need, and greed, of the incumbent industry to maintain the status quo.

Summing Up – Our Future

In conclusion, as someone who studied nuclear engineering but never learned about Thorium Molten Salt Technology, I am disappointed that I was not given the opportunity to learn about this promising and innovative technology during my time in university. However, I am also grateful to have discovered it now, particularly with my professional experience in the sector. I am eager to see how TBs will continue to evolve and change the face of energy worldwide. With the right support and investment, I believe that TBs have the potential to play the main role in meeting our energy needs in a sustainable and safe manner, and I hope that they will receive the recognition they deserve in the years to come.

Miss A., Space Ship Mother Earth, 2023.

References and Links

  1. https://TheThoriumNetwork.com/
  2. https://en.wikipedia.org/wiki/Alvin_M._Weinberg
  3. https://win-global.org/
  4. https://aluminium.org.au/how-aluminium-is-made/aluminium-smelting-chart/
  5. https://www.nuclear-power.com/glossary/doppler-broadening/
  6. Nixon Ends Thorium https://www.youtube.com/watch?v=Mj5gFB5kTo4
  7. https://hps.org/hpspublications/historylnt/episodeguide.html

Tags

#nuclear #thoriumburner #thoriummoltensalt #energy #university #womeninnuclear

How U.S. Policy Shifted Energy & Technology Hegemony to China

Plant Vogtle

By James Kennedy, President of ThREEConsulting.com and John Kutsch, Executive Director of Thorium Energy Alliance, October 3, 2022.

Ordinally appearing in LinkedIn Pulse. Reproduced for educational purposes and with permission.

The Pentagon recently halted the delivery of F-35 fighter jets when it was discovered that they contained Chinese rare earth components. If the Pentagon would look a little more closely, they would find that Chinese rare earth derived components are ubiquitously distributed throughout all U.S. / NATO weapon systems.

It isn’t only U.S. weapon systems, China controls global access to rare earth metals and magnets (and other downstream critical materials) for EVs, wind turbines, and most other green- technology.

However, China’s vision is much more ambitious than controlling the supply-chain for high-tech commodities, they are leveraging their dominance into the clean energy sector. Last month Chinese authorities authorized the startup of what should be considered the world’s only Generation-5 nuclear reactor: a reactor that is inherently safe, non-proliferating, and can consume nuclear waste.

The goal of Net-Zero, and any potential economic benefits, are entirely under China’s control.

China’s leadership position in both of these areas can be traced back to irrational policies and legacy prejudices specific to thorium, a mildly radioactive element that is commonly found in heavy rare earth minerals.

The words that follow, detail the history of how China surpassed the U.S. with its own nuclear technology and displaced its historic leadership position in rare earths.

A Short History on U.S. Nuclear Development

In 1962 Nobel Prize Winning scientist Glenn Seaborg responded to President John F. Kennedy’s request for a Sustainable U.S. Energy Plan. The report titled “Civilian Nuclear Power” called for the development and deployment of Thorium Molten Salt Breeder Reactors.

Abstract
This overarching report on the role of nuclear power in the U.S. economy was requested by U.S. President John F. Kennedy in March, 1962. The U.S. Atomic Energy Commission was charged with producing the report, gaining input from individuals inside and outside government, including the Department of Interior, the Federal Power Commission, and the National Academy of Sciences Committee on Natural Resources. The study was to identify the objectives, scope, and content of a nuclear power development program in light of prospective energy needs and resources. It should recommend appropriate steps to assure the proper timing of development and construction of nuclear power projects, including the construction of necessary prototypes and continued cooperation between government and industry. There should also be an evaluation of the extent to which the U.S. nuclear power program will further international objectives in the peaceful uses of atomic energy.

Civilian Nuclear Power, a Report to the President by Glenn T Seaborg, Atomic Energy Commission, U.S.A. 1962

These ultra-safe reactors are nothing like the legacy reactors that make up today’s Light Water fleet (LWR). When deployed globally, many believe they will be the primary backbone of Green Energy – replacing the existing natural gas dispatchable power that makes up over 70% of the ‘balance-of-power’ in renewable systems.

Unfortunately, Seaborg’s plan died with Kennedy. The cold-war preference for uranium and plutonium over thorium in the 1960s and 70s, coupled with the 1980s modification to U.S. Nuclear Regulatory Committee (NRC) and International Atomic Energy Agency (IAEA) regulations that also impacted how thorium is classified and processed, led to the termination of the U.S. Thorium Molten Salt Reactor program and, effectively, the U.S. (French and Japanese) rare earth industry.

Today, China controls the downstream production of rare earth metals and magnets (used in EVs, Wind Turbines and U.S. / NATO weapon systems) and is boldly pursuing Glenn Seaborg’s plan for clean, safe energy. China’s nuclear regulatory authorities have cleared the 2MWt TMSR-LF1, China’s first Thorium Molten Salt Reactor (Th-MSR), for startup. There is no U.S. equivalent program on the horizon.

Considering that the U.S. initially developed this reactor, it begs the question of why China is leading with its commercial development. That requires a bit of a history lesson.

The goal of harnessing nuclear energy began shortly after World War II. At that time, a number of Manhattan Project scientists were tasked with quickly developing civilian nuclear power. One of the mission goals was to distribute the ongoing cost of producing bomb-making materials across our secretive Manhattan Project campuses onto a ‘civilian’ nuclear energy program. That program eventually morphed into the Atomic Energy Commission and then to the Department of Energy.

From an accounting standpoint, the DOE’s primary purpose was to divert the balance- sheet cost of our nuclear weapons programs off the military’s books.

For its entire history, 70% or more of the Department of Energy’s budget has been directed towards nuclear weapons development, maintenance, and research programs (and cleanup funding of legacy Manhattan Project sites). As the budget priorities demonstrate, solving America’s energy needs was never the first priority of the DoE. Accept that reality, and the long history of DoE mal-investment begins to make sense.

James Kennedy

Results came quickly. The first reactor designs, still in use today, are essentially ‘first concept reactors’: something more than a Ford Model T, but possibly less than a Model A, as economies of standardization were purposely never attempted in the USA, and therefore the USA never achieved the economies of scale that comes from making only 1 type of reactor model like the French and Japanese do.

The rollout of Thorium MSRs will be the equivalent of a modern-day automobile (with standardization of parts and licensing, automated assembly-line production and centralized operation permitting).

Every U.S. Light Water Reactor (LWR) facility is uniquely engineered from the ground up— maximizing its cost. Every permit application is unique. Permit requirements, timelines and outcomes are fluid. The timeline from initial funding for permitting to buildout can take decades. This equates to tying up tens of billions of dollars in financial commitments over a very long time for an uncertain outcome (a number of reactor projects were terminated during the buildout phase, with some near completion). There is an incentive to drag projects out because the EPC builders of the plan are not the operators, so they have to make all their money in the build. For example, the most recent U.S. nuclear buildout is 8 years behind schedule and at twice the estimated cost. This is a recipe for failure.

The original LWR designs, largely developed by Alvin Weinberg, boiled water under immense pressure to turn a shaft, similar to the turbines of a coal fired power plant. The use of water as a coolant is one of the largest contributors to LWR system complexity, risk and costs.

Water’s liquid phase range at normal pressure is 1 to 99°C. Water’s natural boiling temperature does not generate sufficient pressure to economically operate traditional steam turbines so all LWR type reactors use high pressure to force water to remain liquid at higher temperatures. The need to contain coolant failures in such a high-pressure operating environment greatly effects the safety and cost of the entire system. All water-cooled reactors have an inherent design risk, no matter how small, built in.

Weinberg knew there must be a better design, but government and military support rushed in to prop up the development of the Light Water Reactor design. Admiral Hyman Rickover was the leading advocate, quickly developing the first nuclear-powered submarine. The U.S. Army also got in the game, developing a prototype mobile field reactor. The Air Force, feeling left out, looked to Alvin Weinberg to develop a nuclear-powered aircraft.

The Air Force Reactor project required that he develop something entirely new; keeping in mind that this reactor would operate inside an airplane with a crew and live ordinance. These are truly remarkable constraints in terms of weight, size, safety, and power output. Weinberg’s insight led to a reactor that used a liquid fuel instead of solid fuel rods. It was simply known as Alvin’s 3P reactor, all he needed was a Pot, a Pipe and a Pump to build his new reactor design.

Elegant in its simplicity, its safety was based on physics and geometry – not pumps, values, backup generators and emergency protocols.

The Air Force Reactor program was able to prove out all requirements of the program. It was / is possible to build a nuclear-powered bomber aircraft and keep the crew ‘reasonably safe’. However, the development of nuclear-launch capable submarines and the Inter-Continental Ballistic Missile supplanted the need for a nuclear bomber.

The original Air Force Reactor Experiment evolved into the Molten Salt Reactor Experiment (MSRE) developed at Oak Ridge National Lab. This moderated reactor operated for 19,000 hours over 5 years. The reactor was designed to run on a Thorium-uranium mixed fuel. Prior to termination of the project, all operational, safety, material science, and corrosion issues were resolved.

More importantly, the MSRE project proved that you could build a revolutionary nuclear reactor that eliminated all of the inherent safety concerns of the LWR while minimizing the spent fuel issue (what some people call nuclear waste).

The new reactor, commonly known as a Molten Salt Reactor (MSR), used heated salt with a liquid-to-boil temperature range that can exceed 1000°C (a function of chemistry), to act both as coolant and fuel. The recirculation of the liquid fuel/coolant allowed for the fuller utilization (burn up) of the actinides and fission products. The salt’s higher temperature operation that did not need water for cooling, eliminated the need to operate under extreme pressures.

The Molten-Salt Reactor Experiment

This salt coolant cannot overheat, and meets the definition of having inherent safety – MSR’s are inherently safe reactors that eliminate scores of redundant systems, significantly increasing the simplicity of the overall system while lowering risks and cost and increasing its safety profile.

Another advantage is that MSR’s higher operating temperatures allow it to utilize liquid CO2 (or other high compression gases), thus eliminating H2O steam from the system. Moving away from the Rankine turbine system to much smaller and more efficient Brayton turbines delivers a much higher energy conversion at lower costs. The real promise of the MSR was that it produced process heat directly, for hydrogen, desalination, fertilizer, steel production – avoiding inefficient electricity production all while utilizing 100% of the heat energy directly.

Another beneficial feature is the reduced quantity and timeframe of storage requirements for spent fuel (aka: nuclear waste). Inherent to their design, MSRs use-up nuclear fuel far more efficiently than LWRs, less than 1% of the original fuel load can end up as spent fuel, and due to acceleration of decay under the recirculation of the fuel/coolant load the residual spent fuel decays to background (radiation levels equal to the natural environment) in as little as 300 years.

LWRs utilize about 3% of the available energy in solid fuels and the spent fuel does not decay to background levels for tens of thousands of years.

The most promising MSR design feature was found to be that fission criticality (a sustained chain reaction) is self-regulating due to the reactor’s geometry and self-purging features that dumped the fuel/coolant into holding tanks and regulated fission rates (again, based on geometry) if the reactor exceeded design operating temperatures. These features made a reactor “meltdown” impossible and “walk-away safe”.

Because the salt coolant has such a high liquid phase the system can be air cooled (in any atmosphere: the artic, the desert , even versions for space). The elimination of water from the system eliminates the primary failure-point of all conventional nuclear reactors, including explosive events that can occur with water cooled reactors.

NOTE: LWR reactor explosions are due to disassociation of water into hydrogen and oxygen when exposed to Zirconium at high temperatures during coolant system failure. The zirconium fuel casings act as a catalyst, causing a massive rapid atmospheric expansion. This atmospheric expansion was the cause of the explosive event associated with the Fukushima disaster.

The elimination of any high-pressure hydrogen event excludes the potential for widespread radiation release and thus, the need for a massive containment vessel.

Alvin Weinberg’s reactor design also solved another challenge of that time. Prior to the mid- 1970s the U.S. government believed that global uranium resources were very scarce. This new reactor, fueled with a small amount of fissile material added to the Thorium salt, could breed new fuel. In fact, it turned out that the reactor could also be used to dispose of weapons grade plutonium or even spent fuel (stockpiled nuclear waste).

ABSTRACT
The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power.

ORNL – Thorium MSRs From Using Dismantled Weapons, 1991

Unlike natural mined Uranium, which needed intensive processing to concentrate the fissile U235, Thorium is widely abundant and a byproduct of phosphate, titanium, zircon and rare earth ores. Thorium can be used in a nuclear reactor after minimal processing, all benefits that were unheeded in the 60s and 70s.

Since MSRs run at a much higher temperature than LWRs, the greatest benefit would be the direct utilization of thermal energy for industrial processes requiring thermal loads (allowing for the carbon free production of steel, cement and chemicals that make up nearly 25% of all CO2 emissions). Possibilities seemed endless.

Glenn Seaborg’s 1962 report to President Kennedy devised a national plan for sustainable civilian nuclear power. Evaluating the relative safety, efficiency, and economy of the Th-MSR vs. the LWR, Seaborg recommended that the U.S. phase out LWRs in favor of Alvin Weinberg’s Th- MSR Thorium “breeder reactor”.

So why didn’t this reactor design prevail? Considering its economic advantages, the Th-MSR would cause the phase out of the existing nuclear fleet and would be more cost competitive than coal or natural gas (and could replace petroleum via a nuclear-powered Fischer Tropes process), it is no wonder that the reactor was rejected by the prevailing political-economy of cold-war industrialism and what was primarily a hydro-carbon based economy.

The production cost for these reactors was a key concern. The relative cost of assembly line built MSRs reactor would be a fraction of traditional LWRs (these are small modular reactors). As such, MSRs could bring installed cost per megawatt in line with coal fired power plants.

The construction cost advantages are numerous: inherent safety based on geometry (translates into simplicity of design and construction), small, modular, assembly-line built, roll-off permitting, air cooled (eliminating the primary critical failure risk of LWRs and, thus the possibility for a wide-spread radiation event), no need for a massive containment vessel, and small Bryton turbines.

The Thorium fuel would be a byproduct of rare earths (no enrichment is necessary). Rare earths would be a byproduct of some other mined commodity.

Regardless of the economic opposition, there was also a geopolitical conflict. Fueled with Thorium, the MSR did not produce plutonium (fissile bomb making materials) or anything else that was practically usable for the production of nuclear weapons. The reactor was highly proliferation resistant—and who would not like that?

The Nixon Administration, for one. American politics in 1968 were largely influenced by the U.S.’s relative status in the nuclear weapons arms race with Russia. Nixon, a nuclear hawk, killed the MSR program and committed the country to the development of fast spectrum breeder reactors (the program was a total failure), circa 1972.

As early as 1970 a new, safe, clean, cost-efficient, and self-generating energy economy was technically possible but was sacrificed to the objectives of the cold war and preservation of the existing LWR fleet.

If the U.S. had followed Seaborg’s advice the entire world could be pulling up to the curb of Net-Zero today and U.S. energy hegemony would be preserved long into the future.

Instead, today, China is leading the world in the development of Thorium fueled reactors and Thorium based critical materials. They intend to use it as a geopolitical tool: the Chinese version of “Atoms for Peace”. This would end U.S. energy hegemony.

Sadly, most Americans can’t fathom how that would impact their standard of living and create a domestic energy source that would cement their position in the world.

But the story of how Thorium politics and policy derailed U.S. energy and national security interests does not end there.

The Story of Rare Earths

A decade later, the production and proliferation of nuclear weapons material became an international matter of concern. In 1980 the NRC and IAEA collaborated on regulations to ratchet down on the production and transportation of uranium. The regulatory mechanism 10 CFR 40, 75 applied the rules and definitions specific to the uranium mining industry to all mining activity, using the 1954 Atomic Energy Act terminology of nuclear “source material” to define the materials to be controlled.

Uranium, plutonium and Thorium are all classified as nuclear fuel: source material. However, Thorium cannot be used for nuclear weapons (Thorium is fertile, not fissile).

James Kennedy

This caused a new and unintended problem. At the time, nearly 100 percent of the world’s supply of heavy rare earths contained Thorium in their mineralization and were the byproduct of some other mined commodity. Consequently, when these commodity producers extracted their target ores (titanium, zirconium, iron, phosphates, etc.) they triggered the new regulatory definition of ‘processed or refined ore (under 10 CFR 40)’ for these historical rare earth byproducts, causing the Thorium-bearing rare earth mineralization to be classified as “source material”.

In order to avoid the onerous costs, regulations, and liabilities associated with being a source material producer these commodity producers disposed of these Thorium-bearing resources along with their other mining waste and continue to do so today.

Currently, in the U.S. alone, the annual quantity of rare earths disposed of to avoid the NRC source material regulations exceeds the non-Chinese world’s demand by a factor of two or more. The amount of Thorium that is also disposed of with these rare earths could power the entire western hemisphere if utilized in MSRs.

The scale of this potential energy waste dwarfs the collective efforts of every environmentalist on a global basis (including all of the World Economic Forum programs being forced on farmers and consumers across the globe).

As a result, all downstream rare earth value chain companies in the U.S. and IAEA compliant countries lost access to reliable supplies for these rare earth resources.

Capitalizing on these regulatory changes, China quickly became the world’s RE producer.

World Rare Earth Production

During the 1980s, China increased its leverage by initiating tax incentives and creating economically favorable manufacturing zones for companies that moved rare earth technology inside China.

U.S., French and Japanese companies were happy to off-shore their technology and environmental risks (mostly related to Thorium regulations). The 1980 regulatory change and China’s aggressive investment policies allowed China to quickly acquire a foothold in metallurgical and magnet capabilities.

For example: China signed rare earth supply contracts with Japan that required Japan to transfer rare earth machinery and process technology to mainland China while establishing state-sponsored acquisition strategies for targeted U.S. metallurgical and magnetic manufacturing technologies.

By 1995 the U.S. had sold its only NdFeB magnet producer, and all of its IP, to what turned out to be Deng Xiaoping’s family.

In just two decades China moved from a low value resource producer to having monopoly control over global production and access to rare earth technology metals.

By 2002 the U.S. became 100% dependent on China for all post-oxide rare earth materials. Today, China’s monopoly is concentrated on downstream metallics and magnets. In 2018, Japan, the only country that continued to produce rare earth metals outside of China, informed the U.S. government that they no longer make “new” rare earth metals.

Japan stated the reason for terminating all new rare earth metal production is “China controls price”.

Thorium policy was the leading culprit in America’s failure to lead the world in the evolution of the rare earth dependent technologies. From its powerful vantage point, China was able to force technology companies to move operations inside China. From a practical standpoint all past and future breakthroughs in rare earth based material science and technology migrate to China.

Cumulative Patent Deficit USD vs China
Cumulative Patent Deficit USD vs China

The best example of this is Apple. Because the iPhone is highly rare earth dependent, Apple was forced to manufacture it in China. In January 2007 Apple introduced its revolutionary iPhone. By August of the same year high quality Chinese knockoffs were being produced by a largely unknown company named Huawei. By 2017 Huawei was outselling Apple on a worldwide basis.

This story is not uncommon. It is typical of what happens to Western companies who move manufacturing inside China. Apple knew this but had no choice: developing a domestic rare earth value chain was impossible for any single company, industry, or even country by this point in the game.

Today China’s monopoly power allows them to control the supply chain of the U.S. military and NATO defense contractors.

From its diminished vantage point, the Pentagon is somehow unable to understand that China’s monopoly is a National Program of Industrial and Defense Policy.

Instead, the Pentagon pretends that this is a problem that can be solved by ‘the free market’, naively betting U.S. national security on a hodgepodge of junior rare earth mining ventures with economically questionable deposits, no downstream metal refining capabilities and no access to the critical heavy rare earths.

The Pentagon twice bet our national security on a geochemically incompatible deposit in California. The first time was in 2010. The Pentagon was forewarned that the deposit controlled by Molycorp, was incompatible with U.S. technology and defense needs, due to its lack of heavy rare earths, and that its business plan was “unworkable”. The company was bankrupt in just 5 years.

In 2020, despite the same deposit’s intractable deficiencies, Chinese ownership and a commitment to supply China, the Pentagon backed a venture capital group ‘developing’ the deposit under the name MP Materials. The new company has made the same unfulfillable promises as its predecessor but further domestic downstream capability into metallics is unlikely.

MP may remain profitable as long as it continues to sell concentrate and oxides into China, but profitable downstream refining into metallics / magnets is not possible when accounting for China’s internal cost, scale and subsidy advantages (and control over price).

The Pentagon, like so many other investors, fails to accept the reality of China’s monopoly.

It is both an economic monopoly, and a geopolitical monopoly.

Consequently, there have been over 400 bankruptcies in rare earth projects since 2010. Only two western controlled rare earth mines went into production: Molycorp, mentioned above, and Lynas, the Australian company Lynas. Lynas’s success is mostly due the current environment of higher prices (ultimately under China’s control) and a modestly superior rare earth chemistry when compared with the Molycorp Mt. Pass deposit. Lynas survived the 2015 downturn through direct subsidies form the Japanese government, price supports and debt forgiveness from its customers and investors.

Today the U.S. and all western governments find themselves outmaneuvered in rare earths (and other critical materials), the green economy and Thorium nuclear energy.

China is leading the world in the development of Thorium MSRs. Their first two-megawatt prototype reactors was recently cleared for startup (August, 2022). China’s MSR program was built on massive direct investment by the Chinese government and the direct transfer of technology and technical support by the U.S. Department of Energy.

China’s first to market strategy can be expected to conform to their tendency to vertically and horizontally monopolize industries, like rare earths. As such, China is poised to control the global roll out of this technology—displacing the U.S. as the global energy hegemon.

Because the U.S. failed to rationalize Thorium policy it has lost control of its destiny in rare earths and the future of safe, clean, affordable, and sustainable nuclear energy.

Unchallenged, China will be the global champion of net-zero energy.

What are the domestic obstacle to achieving Thorium MSR?

Opposition is directly linked to the cold war policies of the past and the intersection of legacy energy producers (LWR nuclear, coal, natural gas and petroleum) and renewable energy producers. These energy sectors individually and collectively are the political constituents of the DoE. So, despite the opposing interests between each of these energy sectors, the threat of Th-MSR expresses itself as DoE opposition (that is beginning to change).

The other problem with Th-MSR development is the regulatory environment. Regulations are more about protecting legacy interests than public safety. In nuclear regulation it is all about protecting the legacy fleet from new entrants.

For example, the company Nuscale spent over $600 million, over a decade, to certify a new nuclear reactor design. This expense was not to build a reactor. It was the regulatory cost of permitting a new reactor design that (highly conforms to existing LWR designs).

What people overlook is that the real cost and risk in new reactor design is a function of time, money and investor expectations.

In the case of Nuscale, the regulatory and construction cost of a new reactor will be in the multi-billion-dollar range, with over a decade of investor money tied up in the highly speculative investment (speculative in regulatory outcomes and customer orders against existing and alternative technologies) makes this the highest investment risk imaginable.

Accounting for the magnitude of these risks and return expectations, this type of investment is at the outer bounds of what is achievable — in the absence of a monopoly. That is why public investment was always necessary in the nuclear industry. China understands this and has acted accordingly.

What are the domestic obstacles to a domestic rare earth value chain?

The current rare earth issue has not been a mining issue but rather a regulatory issue. The U.S. continues to mine enough rare earths, as the byproduct of some other commodity, to exceed the entire non-Chinese world demand. These resources would quickly become available if the U.S. rationalized its Thorium policy.

The larger downstream problems resulting from China’s massive overinvestment and negligible return requirements in its rare earth industry have yet to express themselves, as the U.S. government blindly funds non-compatible, non-viable, non-economic downstream projects.

Without a production tax credit to off-set Chinese subsides, all of these projects will fail.

Balancing the comparative cost of capital and investor return expectation also must be answered.

Solutions

There are potential solutions. For rare earths there is a production tax credit bill that could off- set China’s generous subsidies, zero-cost capital and production cost advantages (comparative labor & environmental costs). There may also soon be proposed legislation to solve the Thorium problem. This same proposal would also provide a funding and development platform for a U.S. based Thorium MSR reactor industry.

There are solutions, but time is running out.


To learn more about advancing U.S. interests in the development of MSRs and ending China’s rare earth monopoly please visit the ThoriumEnergyAlliance.com or ThREEConsulting.com.


Authors

James Kennedy is an internationally recognized expert, consultant, author, and policy adviser on rare earths and Thorium energy.

John Kutsch is the executive director of Thorium Energy Alliance, an organization dedicated to the advancement of Thorium for power and critical materials applications.


References and Links

  1. http://threeconsulting.com/
  2. https://www.linkedin.com/in/james-kennedy-5622bb50/
  3. https://thoriumenergyalliance.com/
  4. https://www.linkedin.com/in/kutschenergy/
  5. https://www.linkedin.com/pulse/how-us-policy-shifted-energy-technology-hegemony-china-james-kennedy/
  6. https://www.politico.com/news/2022/09/07/pentagon-suspends-f-35-deliveries-china-00055202
  7. https://en.wikipedia.org/wiki/Glenn_T._Seaborg
  8. https://pastdaily.com/2018/10/29/october-29-1961-dr-glenn-seaborg-has-a-word-or-two-about-nuclear-energy-meet-the-press-past-daily-reference-room/
  9. https://www.osti.gov/servlets/purl/1212086
  10. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
  11. https://www.augustachronicle.com/story/news/2021/11/04/georgia-power-nuclear-reactors-plant-vogtle-cost-doubles-energy-costs/6286729001/
  12. https://en.wikipedia.org/wiki/Hyman_G._Rickover
  13. https://energyeducation.ca/encyclopedia/Aircraft_reactor_experiment
  14. https://en.wikipedia.org/wiki/Molten-Salt_Reactor_Experiment
  15. https://www.youtube.com/watch?v=tyDbq5HRs0o
  16. https://www.nuclear-power.com/nuclear-engineering/thermodynamics/thermodynamic-cycles/rankine-cycle-steam-turbine-cycle/
  17. https://www.energy.gov/ne/articles/sandia-researchers-deliver-power-grid-new-brayton-cycle-technology
  18. https://threeconsulting.com/mt-content/uploads/2021/04/th_msrs_heufrom_dismantled_weapons.pdf
  19. https://web.archive.org/web/20151107033818/https:/inldigitallibrary.inl.gov/sti/2664750.pdf
  20. https://www.nrc.gov/reading-rm/doc-collections/cfr/part075/index.html
  21. https://threeconsulting.com/mt-content/uploads/2021/04/chiarepatent.pdf
  22. https://en.wikipedia.org/wiki/Deng_Xiaoping
  23. https://www.congress.gov/115/crpt/hrpt676/CRPT-115hrpt676.pdf
  24. https://threeconsulting.com/mt-content/uploads/2021/04/sme-rareearthsdeceptionwebv.pdf
  25. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
  26. https://www.nextbigfuture.com/2022/08/chinas-2-megawatt-molten-salt-thorium-nuclear-reactor-has-start-up-approval.html
  27. https://threeconsulting.com/mt-content/uploads/2021/04/casdoetech.pdf
  28. https://www.congress.gov/bill/117th-congress/house-bill/5033/text?r=164&s=1

#rareearths #nuclearenergy #nationalsecurity #nationaldefense #china #criticalminerals #departmentofenergy #departmentofdefense #EV #netzero #netzerocarbon #greentech #geopolitics #renewableenergy #cobalt #nickel #graphite #lithium #weapons #defensetechnology #mining #miningindustry #miningnews #greensteel #neodymium #terbium #pentagon #hegemony #monopoly #intellectualproperty #windenergy #solarenergy #hydrogen #thorium #thoriumenergyallianc #energy #scienceandtechnology #aviationindustry #aviationnews #airforce

Interview #1, Prof. Akira Tokuhiro of Ontario Tech University. Part of the Student Guild Interview Series, “Leading to Nuclear”

Bruce Power - A Nuclear Generating Station

World’s first reactor was built in 1942 in Chicago by Enrico Fermi and his team. Since then several hundred nuclear reactors were built, shut downed and rebuilt. For the future, six types of Generation 4 fission machines wait to be born. The world needs the energy to develop and maintain life but above all these reasons there is an essential one: going to Mars and supplying all energy that is needed for life. That’s my priority motivation and purpose for choosing the nuclear area to work. History tells us that “never forget to take lessons from past” and future tells us that “enlighten your ways from your mistakes”. The nuclear accidents that happened in the past led us to Gen 4 designs. As students, we are the ones who determine the nuclear reactor’s destiny. One of the Gen 4 designs is Molten Salt Reactor. We are trying to understand what can we do to design and build a molten salt reactor. We do this by interviewing nuclear experts, engineers all over the world. Come and join our story!

Stagg Field, Chicago Pile 1
Enrico Fermi
Molten Salt Fission Energy Technology

The Student Guild’s first interview was with Professor Akira Tokuhiro. He recently stepped down as the Dean of the Faculty of Energy Systems and Nuclear Science at Ontario Tech University in Canada. Also, he was in the American Nuclear Society’s President’s Committee on the 2011 Fukushima Daiichi nuclear power plant accident in Japan. He is an international nuclear energy expert.

Rana
President of the Student Guild
The Thorium Network


Interview 001, Prof Akira Tokuhiro of Ontario Tech University – Leading to Nuclear Interview Series

What does nuclear energy expert do?

We do many things. We design Generation 4 (IV) systems. We look at the safety issues of current reactors and reactors that will be constructed. We are always looking for continuous safety improvements. We have 4 questions to be answered about safety and accidents, “what can happen, how often can it happen, how does it happen and what are the consequences?”. We ask these questions and we do the engineering design, safety analysis for that. Now nuclear engineering requires computer programming and engineering analysis. Applications of virtual reality, augmented reality, new applications of artificial intelligence, and machine learning will be used by new nuclear engineers to design and operate reactors.

In one of your interviews, you said “Nuclear reactors are challenging, that’s why I choose the nuclear energy area to work”. What is the most complex and challenging thing in the nuclear area or reactor physics?

For me, the most interesting and challenging thing is you have to know many things. You may find the solution for a small area but nuclear power plant is many different things. If you find a solution for a small area, it may impact other things. That’s why you have to look at many different things and you have to integrate them. That’s challenging for me. That integration that I teach to my students. How do you design a reactor? You design from the reactor core and then outward from the core.

What are the most common safety design features for Gen 4 that at the same time can be used for Gen 3 or Gen 2 reactor safety designs?

We have learned from Generation 2, 3 and 3+ about human factors engineering. There are two things about human beings, one is human beings are unreliable, other is unpredictable. When you apply these to safety systems, you want to design the reactor that minimizes probability for human error. Gen 4 and small modular reactors are designed so that cooling is assured, and do not rely on human operators because they can make mistakes under pressure. You have to design the reactor so that after shutdown decay heat can be removed without human intervention.

What is the biggest problem about safety that must be redesigned immediately now? For example, for PWR Generation 2 designs, what is the biggest safety problem about that reactor, and how can it be redesigned?

My opinion is reactor is designed so that it can shut down when a postulated event occurs. Even if an earthquake happens, the reactor can shut down like the reactors are located at Fukushima. The reactor was shut down after the earthquake. To remove the decay heat that’s remaining, pumps may be required to facilitate cooling for the first 72 hours. After two weeks the decay heat has to be much less. That has to change in all plants. Cooling after shut down is possible, we can do that but we have to make sure that even if we have a terrible earthquake, sufficient cooling has to remove thermal energy from the core. In SMR’s we don’t need pumps, like large reactors; when you have a pump, you also need a source of water in order to maintain cooling to take the heat. The safety problem of Gen 2 and Gen 3 designs is to prevent the meltdown of the core.

“By 2030 or 2035 Gen 4 large reactors or small modular reactors will be built by Russia or China.”

When do you think the first Gen 4 reactor will be built and where will it be built and which design will be built?

I think by 2030 or 2035 some Gen 4 reactors will be built. It may be Gen 4 large reactors but it is also possible that small modular reactor may be built too. It depends on the country. Russia and China have their designs and they are being constructed. It is difficult to call them Gen 4 but recent VVER is an improved design. China is building different kinds of reactors and operating them. So by 2030 or 2035 Gen 4 large reactors or small modular reactors will be built by Russia or China. In the west, new reactors very much depends on investment. For example, in North America before 2035 there will be a small modular reactor constructed and ready to operate as well.

What are your thoughts about thorium molten salt reactors?

Thorium Molten Salt reactors combine interesting reactor design with a fresh look at a new type of fuel. In the least next 3-5 years, we need much more engineering to finish the design and to get the regulatory approval of the completed design. Since my background is from the US, I am familiar with US Nuclear Regulatory Commission and they will importantly ask safety questions about design basis accidents. If you don’t have a pump, as part of the design natural convection cools the reactor so it may be a preferred design. Molten salt reactors are an interesting design and thorium is a different type of fuel. Perhaps by analogy, the nuclear industry is very similar to a restaurant or the automotive sector. You have to have customers and people come to eat at a restaurant. You have to make a popular automobile and people have to trust the safety and they are buying the safety in design that comes with it. Thorium Molten Salt design has to be finished and the design has to convince the regulator that it is a sufficiently safe design and that is constructed.

You are an expert on nuclear safety. Do you think passive safety systems designed for molten salt reactors are sufficient? Are there any other passive systems projects running? Can you please give us the details?

The molten salt reactor concept came from the 1950s and 1960s. Modernized design of the MSR started with Oak Ridge Molten Salt Reactor. (MSRE) They operated a research and demonstration reactor for a few years so fifty years later we are updating this design. I think the concept is solid but needs details; safety cases are convincing. If you have the money and engineers the first step to building a reactor is making a research and demonstration reactor to show that the reactor is very safe. For example, in molten salt reactors, fuel flows in a tank by gravity when an unanticipated event occurs. That is when a PS may be needed. So this means no operator, no human error.

“We need more nuclear power plants because we need a quick transition to a lower CO2 economy or scale.”

About thorium molten salt reactors, what can students do?

Now in the last five years, I think it is very important for students to find friends all over the world and to be interested in solving the challenges posed by climate change. We need to reach net-zero as quickly as possible: even before 2050. I think we have to make progress every five years or it will become very difficult to meet our net-zero carbon economy. We have to make as much progress by 2030. By 2050 we have to make substantial progress or net-zero carbon economy. If we don’t have any progress by 2030 reaching a net-zero carbon economy becomes increasingly difficult. Now we have the power of social media. Students have to ask many questions to old people like me about safety, design. We have to change and seek from the regulator, approval of the new reactors designs. We have a lot of experts from many countries. We already have about 440 nuclear power plants in the world but we need as many as ten times as many reactors to tackle climate change. We need more nuclear power plants because we need a quick transition to a lower CO2 economy or scale. It is not the ultimate solution for climate change but it is a solution that we have now. Young people can become involved through social media and by asking good questions. We need to convince people that by combining nuclear energy, wind, and solar we can reach a net-zero carbon economy. We need nuclear power, it may be risky, but risk and fear are a spectrum. If you think the benefit is greater than the risk then you would do it. People are usually afraid when they don’t understand the risk so they think the risk is very big and the benefit is not so big.

How did you decide to join the Thorium Network? What was the most attractive thing that impressed you about Thorium Network?

I contacted one of the founders Jeremiah Josey. I thought the thorium molten salt reactor is interesting and thorium is an alternative to uranium. It is a network. This network includes many people all around the world. That’s why I joined. The network is a new way to design a reactor.


I had a great time while talking with Professor Tokuhiro. I would like to thank him for his time and perfect answers.

Thorium Network Student Guild continues to inspire people all around the world. Come and join our team! You can find the Student Guild application on this page:

The Student Guild of The Thorium Network


Links and References

  1. Professor Akira Tokuhio on LinkedIn
  2. Rana on Linkedin
  3. The interview on YouTube
  4. Ontario Technical University
  5. Generation IV Fission Technology
  6. Chicago Pile 1
  7. ANS Committee Report: Fukushima Diiachi
  8. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  9. The Thorium Student Guild

#ThoriumStudentGuild #LeadingToNuclear #Interview #AkiraTokuhiro #OTU

Launching the Student Guild Interview Series, “Leading to Nuclear”

Nuclear Power Station

We live in a finite world. Our world has a limited time until its end. There are 7.753 billion people who are trying to survive every day out there. Climate change is real and our world continues to warm. If we don’t do something about climate change, we will never live in the same world that we used to live in. Our lives might change completely. We are responsible for all the actions that we have done to the world and nature. So it is time to correct our mistakes and take the action! 

Bill Gates

“Nuclear energy, in terms of an overall safety record, is better than other energy.” 

Bill Gates

We all know that wind and solar are not enough to stop climate change. We need a combination of nuclear, solar, and wind because nuclear energy has zero carbon emissions. That’s what we need! Do your research, ask what you want to ask at the end of the day you will see that nuclear is the only answer. Now we have an even better option which is Molten Salt Fission Energy Technology. It is safe, reachable but needs committed research and development programs worldwide. We need to convince the world that now nuclear power is safer than ever.

Students have the power of changing minds, creating new ideas, and supporting each other. At this point we are going to do all the things that we can do since still we have time. We are going to interview nuclear engineers, nuclear energy experts, and people who are interested in nuclear power to learn how we can reach a net-zero carbon economy with nuclear power. Also, we are going to learn how Molten Salt Fission Energy Technology can be accepted by regulators and what can we do about Thorium-based fuel. We are going to publish blogs about every interview. We interview people as much as we can. This way we will create a new era about Molten Salt Fission Energy Technology and Thorium fuel. It is a long journey but hopefully, at the end of it, we will have smiles on our faces with champagnes in our hands. 

Our first interview is with Professor Akira Tokuhiro of Canada. He recently stepped down as the Dean of the Faculty of Energy Systems and Nuclear Science at Ontario Tech University in Canada. Also, he was in the American Nuclear Society’s President’s Committee on the 2011 Fukushima Daiichi nuclear power plant accident in Japan. As international nuclear energy expert readers of this interview will gain a rare insight few will experience in their lifetime.

Prof. Akira Tokuhiro

Our interview with Professor Tokuhiro will be one of many coming over the next several months as we bring you key insights on an industry rarely discussed outside.

Rana,
President
The Student Guild


Thorium Network Student Guild continues to inspire people all around the world. Come and join our team! You can find the Student Guild member application on this page:

The Student Guild of The Thorium Network

Links and References

  1. Leading to Nuclear, Interiew #1, Prof. Akira Tokurio, Ontario Technical University, Canada
  2. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  3. The Student Guild
  4. Rana on Linkedin

#StudentGuild #LeadingToNuclear #Interview #MoltenSaltFissionEnergy #Thorium

One Day in 2050 – A New Dawn Comes

Tree City and Metro

This piece was written as part of the oneday2050.org program, created by Jaume Enciso Cachafeiro of Sabadell, Catalonia, Spain. Reach out to Jaume if you want also to contribute.

“Our minds are the most powerful tools we have. Applied correctly, we can achieve anything”

Jeremiah Josey

The sun rises and over a verdant green vista. My home awakes me with the gentle sounds of birds and the curtains slightly to let in the Eastern rising sun. I motion with my hand and the curtains fully open. Other folk have the electrostatic polymer window panes installed but I still like the feel and texture of a material window covering. Even if it is 100% fabricated from grown polymer fibres. Through my windows I see the tops of thousands of trees lit by the brilliant, new, fresh gold of the morning sun. These trees are less than 30 years old and spread as far as I can see.

I also see 5 other residential towers like the one I’m in. Each is 1,000 metres high and with the same 10,000 apartments. All are connected beneath the trees by boulevards and underground maglev personnel pods and shuttle carriages. I can also see the faint steam coming up from several areas among the tees.

That’s why I live here. Cheap electrical energy, and thermal domestic heating. 10 times less than even the cheapest fossil fuel from 30 years ago. Hidden beneath the trees and 20 metres of earth are tiny power generators driven by Thorium Molten Salt Fission Technology. I had a small hand in that – I was one of the scientists in the early design teams.

Safe, clean and green. The power units are entirely replaced every 20 years – even though they have a lifespan of 30. These power units are second generation already. Maybe 40 years they can be here. No overhead cables. No step down transformers. No cooling towers. No fuel lines. No coal conveyor belts. No waste heaps. Wow, what a change.

The supercritical CO2 turbo-machinery was developed by Mitsubishi and Siemens. They are tiny and work for decades with no maintenance. Heck, we are even using Stirling cycle machines in 3 of the power units. Maybe we’ll switch over soon for all of them.

This device produces the same energy output as the one behind. That’s the power of Super Critical CO2

Power generation in 2050 has become easy. No more oil wars, oil blockades, gas transit or border disputes. Each country has access to technology as common as the once common internal combustion engine. 

Thankfully Elon Musk finally killed that infernal fossil driven machine 20 years ago. It’s all electric from here – neutrons to electrons. Everyone is happy. There’s still lots to do: millions have had to move because of rising sea levels. At least now we can build it right.


CEO and Founder, Mr. Jeremiah Josey

Authored by Jeremiah Josey
Founder and CEO of The Thorium Network

References
1. https://www.oneday2050.org/participants
2. https://www.linkedin.com/in/jaume-enciso-cachafeiro/
3. Media content: https://mcusercontent.com/05029fefeb09e61eff7ed3715/files/8f938462-404b-3c76-49f3-92d6cf01cce9/10_07_Jeremiah_Josey_ENG_TEC.pdf
4. https://www.powermag.com/first-commercial-deployment-of-supercritical-co2-power-cycle-taking-shape-in-alberta/
5. GE’s 10MW Supercitical CO2 https://www.nextbigfuture.com/2016/04/ge-has-prototype-10-megawatt.html
6. Doug Hofer https://www.linkedin.com/in/doug-hofer-561a1919/
7. Vitali Lissianski https://www.linkedin.com/in/vitali-lissianski-06387827/
8. http://madan.org.il/en/news/futuristic-green-city-china
9. https://futurearchitectureplatform.org/projects/d6538a2a-0f90-4a6d-aaf6-89ca56e3d3a3/
10. https://www.theglobeandmail.com/report-on-business/economy/canada-competes/singapores-futuristic-gardens/article11674777/
11. https://www.yankodesign.com/2011/04/26/2011-evolo-magazine-skyscraper-competition-finalists/
12. https://www.ornl.gov/molten-salt-reactor/history
13. https://futurism.com/tree-skyscrapers-underwater-restaurants-most-futuristic-designs-year
14. https://www.sustainable-carbon.org/report/power-generation-from-coal-using-supercritical-co2-cycle-ccc-280/

Asia leads the way for our Carbon Free Future

With so many nuclear reactors planned (a.k.a. fission energy machines), it’s an obvious outcome for the world in general: clean, green, safe energy production for the most populous region on earth. That means for Asia: clean air, clean water, and clean lives, with… low cost, safe energy. Production efficiency rates in the region will sore. Innovation will eclipse anything we’ve seen before. The environment will become a green wilderness again (remember too China reclaims over 2,000 square km of desert each year). This is the next revolution, after the Industrial, after the Information. It’s the Energy Revolution. And it’s very exciting to be part of it.

Remember, we all breath the same air.

Jeremiah Josey
Founder and CEO
TheThoriumNetwork.com

#EnergyRevolution #greenenergy # #energy #innovation #thorium #moltensaltfissiontechnology

All the colours of the rainbow – a fad for Hydrogen

Nuclear Power under the Rainbow

I love all the colours chosen for a gas that has none. There is no smell either. Pink, green, blue, grey, black, yellow, white, maroon… I’m making them up now, but it doesn’t matter. There is an odour coming from this “new hydrogen economy”.  Hydrogen is not an “energy source”. It’s how we can transport energy. From where it’s made to where it’s consumed. The colours are a clever way of identifying the source of the energy before conversion into hydrogen. But be clear, hydrogen is not a “fuel” that replaces “fossil fuels”. Lithium is useless until energised in a Li-Ion battery. Hydrogen is useless until you make it, or rather separate it, from it’s most common bonded atomic partner – Oxygen. Then again I do enjoy a good drink of oxidised hydrogen. The most common form of hydrogen on earth – water – is not useless at all.

Hydrogen on the surface is “better” than hydrocarbons. It has twice the energy density. Fossil fuels, incidentally are stores of energy: you dig them up, or pump them out, and immediately convert them to heat. Remember that our most common need for energy is low cost heat. Hydrogen as a fuel is yet to find that low cost convertibility to a low priced, abundant fuel. It is easier to transport the energy via electrons, than lug around a much heavier proton with a electron attached to it.

For pipes and storage tanks, the metallurgy of hydrogen makes problems because it can embrittle many materials. It’s a very small molecule and creeps into all kinds of places. Hydrogen has a very wide explosive range: 4 to 74%, and will ignite with sunlight. It’s tricky stuff to work with.

I don’t see hydrogen becoming anything other than another energy distraction. Much the same way that ethanol was 20 years ago. But we are not adept at learning from our mistakes. There will be regions that will benefit for reasons other than are written here.

Hydrogen has a very wide explosive range: 4 to 74%, and will ignite with sunlight. It’s tricky stuff to work with.

Thorium Molten Salt Fission Energy technology making electricity is a viable proposition. The technology hurdles where identified and addressed more than 50 years ago.  Yes, hydrogen production using Molten Salt Technology is a very viable option – where it is needed. The Energy Return on Investment (EROI) of energy from Molten Salt Fission Energy Technology is 30 times better than any oil equivalent and 512 times better than wind and solar. (Anyone remember fuel ethanol? The EROI is somewhere between 0.9 and 1.1 – pitiful).

Let those numbers sink in… That’s where you’ll find the real gold at the end of the rainbow.

Jeremiah Josey
Founder, The Thorium Network