Critical Analysis of a Questionable Review on Molten Salt Technology

Doomsday Clock

The Article

The name of the article is “Molten salt reactors were trouble in the 1960s—and they remain trouble today.”, authored by M. V. Ramana and appearing 20 June 2022 on the website of the Bulletin of Atomic Scientists. Keep in mind that the Bulletin of Atomic Scientists are the keepers of the “Doomsday Clock” – a relic of the cold war era designed to keep Joe Public scared and the public funding coffers open so the industrial-military complex of the west could continue building nuclear weapons. The links is the end of this article.

The Doomsday Clock has been ticking for 70 years. It’s time to let it die.

Why I’m giving up on the apocalypse countdown., Shannon Osaka, Reporter

We could spend hours rebutting and refuting every single piece of purported evidence submitted by the article, but that is not smart thing to do. And it’s not actually the point. When you understand the meaning behind the article a direct refute is actually a waste of time.

Not a Technical Data Review nor a Rebuttal of Technical Content

But, on the technical competence of Thorium Molten Salt technology, we have spent many hours interviewing the last surviving members of the research programs of the 1960’s and 1970’s. We can state that all the claims in the article we have reviewed are bogus. Hence our review here.

The article was clearly a hit piece from the start, so it must be assessed as one. We will review the writing style and the techniques used to make it appear a useful and credible piece. But in fact it is not at all. It has nothing to do with science and everything to do with objectives that are not clear from the article itself.

The article creates a dismal portrayal of actual events, and doubt and hesitation in the mind of the uninformed reader. Even a nuclear scientist who hasn’t studied the MSRE could nod their head in agreement – unless they critically review how the data is presented.

If used skillfully, the article would be a damaging success and Thorium Molten Salt would remain on the shelf.

The article is designed to be given to a senator or congress member (India, USA, German etc.) who might be teetering on the edge of supporting the best form of energy generation we have: Thorium Molten Salt.

This article could also be used to commit USD billions of public money to dilute and bury U233. Who owns the contracting companies work in the place where they will bury it? Follow the money.

It’s unfortunate that such people exist who put their name to such work, but hey, it’s not a game without an opponent.

Lessons First: How to Distract with Writing

Firstly here’s some pointers on how to attack something with an article, without making it appear like an attack. There are certain techniques that a writer can use to make their writing appear full of valuable data while dissuading further analysis.

These techniques include:

  • Overloading the article with technical jargon and complex language that is difficult for laypeople to understand. This can make the reader feel overwhelmed or intimidated, and discourage them from delving deeper into the topic.
  • Presenting only one side of the argument, and ignoring or downplaying any opposing viewpoints or evidence. This can create the impression that the author has provided a complete and conclusive analysis, when in reality there may be much more to consider.
  • Using emotionally charged language or rhetoric to appeal to the reader’s emotions, rather than presenting objective facts and evidence. This can make it difficult for the reader to separate the author’s opinion from the facts of the matter.
  • Limiting the scope of the article to a narrow or specific aspect of the topic, without providing a broader context or perspective. This can make it seem as though the topic is fully explored, when in reality there may be many other important factors to consider.

Other variations of techniques that can be used to appear scientific and fact-based while actually presenting a biased or negative view of the subject matter. can be:

  • Selectively citing studies or data that support the writer’s viewpoint while ignoring or downplaying studies or data that contradict it.
  • Using loaded language or emotional appeals to discredit the subject matter or those associated with it.
  • Employing a one-sided or cherry-picked narrative that presents a biased view of events or situations.
  • Using innuendo or insinuation to suggest negative associations with the subject matter, without providing clear evidence to support the claims.

The Authors Background

Let’s now consider the author. Who is he and what is his beef with Thorium? It’s important to understand their position and who or what they may be supporting in the background.

On face value, it seems that M. V. Ramana is a well-respected expert in nuclear disarmament. He has published extensively on the subject, and his work has been recognized with several awards and appointments to prestigious organizations. Ramana’s focus on disarmament and nuclear risk assessment suggests that he is concerned about the potential dangers of nuclear power and views it as a threat to global security.

Given his expertise in the field and his focus on disarmament, it is not surprising that Ramana is critical of Molten Salt Burners. His emphasis on the risks associated with this technology, such as accidents and proliferation concerns, have been debunked in numerous papers and reports, however it obvious that Ramana still views them as unacceptable given the article and his general concerns about the nuclear topic. Additionally, his affiliation with groups such as the International Nuclear Risk Assessment Group and the team that produces the World Nuclear Industry Status Report suggest that he is part of a broader movement to promote other energy options, which may lead him to be sceptical of any nuclear technologies.

However, upon reviewing the previous articles Ramana has authored or co-authored, notably absent is anything about UK’s plans to increase their nuclear arsenal. The UK needs to boost their uranium fired power industry to give cover for plutonium production. The material is necessary for the additional 80 Trident warheads the UK intends to build in the next few years.

You can dive down that rabbit hole of more nuclear weapons with these links:

UK Planning for Rapid Nuclear Expansion

UK Increases Nuclear Arsenal Article 1 – Reuters

UK Increases Nuclear Arsenal Article 2 – Guardian

Having no article on this is strange considering Ramana’s position as chair of a non-proliferation organization, and his propensity to produce articles. There are 33 articles on The Bulletin alone with his name attached.

However one must consider what the UK has been doing to rubbish Thorium. We will touch on it here but it does deserve a full article in the near future.

Put frankly, after the IAEA published their technical memo 1450 in May 2005 supporting Thorium as a fuel and identifying it’s non-proliferation features, the UK set about the systematic vilification of Thorium. An anti-Thorium article by three learned (but non-nuclear) Cambridge professors; a publicly funded 1.5 million GBP “no-to-Thorium” research report by a single person consultancy that referenced Wikipedia as a source; the gagging of a Lord; the possible early demise of the former head of Greenpeace UK, who had switched to Thorium. Then, the announcements of new nuclear energy for UK and shortly thereafter new nuclear weapons. It’s the makings of a sinister plot of a Bond movie. Or perhaps more akin to a “Get Smart” episode, or indeed, for the UK, “Yes, Minister”.

IAEA Technical Memo 1450 Thorium Fuel Cycle Potential Benefits and Challenges

Be sure to consider this IAEA report on Thorium focuses on solid fuel uses. This is not ideal. This is addressed very well by Kirk Sorensen in 2009 and you can read that here:

A Response to IAEA-TECDOC-1450

So the question is, does Ramana receive funding or any kind not to discuss new weapons for the UK? Has he been prompted (paid) to weigh into the argument against Thorium because of these plans?

We will never know these answers.

Review of the Writing Style of the Article

Launching into the article itself, here are some of the techniques that have been used manipulate readers.

Emotional Language

Use of emotional language. The author uses words like “trouble” and “hype” to describe molten salt machines, which could instill a negative emotional response in readers and make them less likely to consider the technology objectively. The author refers to the “failed promises of nuclear power,” which may be intended to evoke a sense of disappointment or disillusionment with nuclear energy in general.

Cherry Picking Data

Cherry-picking data. The author points out that “no commercial-scale molten salt reactors have ever been built,” which could be interpreted as evidence that the technology is unproven or unreliable. However, this overlooks the fact that of the numerous activities worldwide to commercializes the technology. There are several countries and many private companies actively pursuing new molten salt reactor designs.

The author notes that molten salt reactors require “materials that can withstand intense radiation and high temperatures,” which could be interpreted as a major technical challenge. However, this overlooks the fact that many materials capable of withstanding extreme conditions already exist, and that ongoing research is aimed at developing even more robust materials.

Logical Fallacies

There’s multiple use of logical fallacies. Here are two examples:

Example 1: The author suggests that because molten salt reactors were initially developed as part of a military program, they are inherently problematic or dangerous. This is a classic example of an ad hominem fallacy, which attacks the character or motives of an argument rather than addressing the argument itself.

Example 2: The author implies that because molten salt reactors were not ultimately adopted for commercial use in the 1960s, they must be fundamentally flawed. This is an example of a false dilemma fallacy, which presents only two options (in this case, success or failure) and overlooks more nuanced or complex possibilities.

Appeal to Authority

Used extensively is appeal to authority. The author repeatedly references well-respected scientists and institutions to bolster his argument against molten salt reactors. While it’s important to consider expert opinions, the constant invocation of authority figures can also be a way to shut down debate and discourage readers from doing their own research. For example, he cites a report from the Union of Concerned Scientists that characterizes molten salt burners as “inherently dangerous,” but doesn’t provide any details about the methodology or findings of the report.

Fear-Mongering

Basic Fear-mongering is used. In addition to playing up the potential risks of molten salt burners, the author also seems to imply that proponents of the technology are somehow sinister or untrustworthy. For example, he writes that “The companies and individuals involved in promoting this technology today have made claims that range from the dubious to the outright false.” This kind of rhetoric can be effective at turning readers against a particular idea or group, but it doesn’t necessarily contribute to a reasoned discussion of the topic at hand.

Oversimplification and Generalization

There are examples of oversimplification. While the author does acknowledge that there are some potential benefits to molten salt burners, he ultimately argues that they are too risky and impractical to be a viable solution to our energy needs. However, his arguments often rely on oversimplifications or generalizations that don’t fully capture the nuances of the technology. For example, he writes that “One of the main reasons molten salt reactors were abandoned in the 1960s was their inherent safety problems,” without providing any additional context or elaboration on what those safety problems were. This kind of oversimplification can be misleading and obscure important details that might challenge the article’s argument.

Overall, it’s clear that the author is deeply skeptical of molten salt burners and believes that they are not a viable solution to our energy needs. While it’s important to consider potential risks and drawbacks associated with new technologies, it’s also important to have an open and nuanced discussion about their potential benefits and drawbacks. The techniques used in the author’s article are also manipulative and intellectually dishonest, and readers should be aware of these techniques as they consider his argument.

Further Reviews

Now here are three credible reviews by three very different professionals:

  • A pro-nuclear scientific author with a PhD in nuclear physics.
  • Another science author but with a PhD in psychology and no nuclear training whatsoever.
  • An environmental scientist and environmental advocate looking for a solution (a degree in environmental science).

Pro-Nuclear Scientific Author

I am a pro-nuclear supporter, and must be since I am also a Doctor of Nuclear Physics, I reviewed the article “Molten salt reactors were trouble in the 1960s—and they remain trouble today” by M. V. Ramana. I will focus on the blatant non-scientific methods used to discredit a perfectly viable technology.

The article discusses the popularity of molten salt nuclear reactors among nuclear power enthusiasts, and their potential to lower emissions, be cheaper to run and consume nuclear waste, and be transportable in shipping containers. The article mentions how various governments and organizations have provided funding for the development of these reactors. However, the author asserts that this technology was unsuccessful in the past and is the solution to our current energy problems.

The author uses a several subterfuge techniques to support his argument. Firstly, he uses loaded language to portray molten salt reactors as a risky and problematic technology. For example, he uses the phrase “all the rage among some nuclear power enthusiasts” to imply that people are overly enthusiastic about this technology. The phrase “trouble” in the article’s title also suggests that molten salt reactors are problematic. Additionally, the author uses the phrase “legendary status” to describe the Molten Salt Reactor Experiment, which is a hyperbole that can exaggerate the reactor’s success and, therefore, make it seem like a risky venture.

The author uses a strawman argument to discredit molten salt reactors’ developers and proponents. By implying that these people believe that the Molten Salt Reactor Experiment was so successful that it only needs to be scaled up and deployed worldwide, the author sets up a weak and exaggerated version of the opposition’s argument, which is easy to refute.

The author uses an appeal to emotion by asking readers to adopt a 1950s mindset to understand the interest in molten salt machines. The author makes an emotional appeal by stating that breeder machines would allow humanity to live a “passably abundant life.” By doing so, the author tries to persuade readers that using molten salt machines would not lead to a more abundant life, which is an emotional argument rather than a logical one.

The author provides detailed information on the fuel used in the MSRE, including depleted uranium, highly enriched uranium (HEU), and uranium-233 derived from thorium. However, the author uses subterfuge by presenting the information on the fuel without providing any context on why these fuels were used. HEU was used during that time because it was the only fuel that could sustain the reactor at high temperatures. Uranium-233 was derived from thorium, which is more abundant than uranium, and the intention was to use this as a breeder fuel to produce more fissile material.

The author then goes on to criticize the MSRE by stating that the reactor failed to reach its intended power output of 10 MW. However, this information is presented without any context on the significance of this failure. The MSRE was an experimental reactor, and its primary goal was to test the feasibility of the technology. The fact that the reactor was operational for four years and achieved a maximum power output of 8 MW is significant in demonstrating that the technology was viable.

The author also highlights the interruptions that occurred during the operation of the MSRE, including technical problems such as chronic plugging of pipes, blower failures, and electrical failures. However, these issues are common in any experimental reactor, and the author fails to provide any context on the significance of these issues. It is essential to note that the MSRE was the first and only molten salt reactor to be built, and it was an experimental reactor. Therefore, the primary goal was to test the feasibility of the technology, and it was expected to encounter problems.

The author argues that materials must maintain their integrity in highly radioactive and corrosive environments at elevated temperatures. The corrosion is a result of the reactor’s nature, which involves the use of uranium mixed with the hot salts for which the reactor is named.

The article uses the technique of “cherry-picking” when discussing the material challenges in the manufacturing of molten-salt-reactor components. While the author acknowledges that Oak Ridge developed a new alloy known as IN0R-8 or Hastelloy-N in the late 1950s, which did not get significantly corroded during the four years of intermittent operations, the author also highlights that the material had two significant problems. First, the material had trouble managing stresses, and second, the material developed cracks on surfaces exposed to the fuel salt, which could lead to the component failing.

The author uses the technique of “fear-mongering” when discussing the material challenges. The author claims that even today, no material can perform satisfactorily in the high-radiation, high-temperature, and corrosive environment inside a molten salt reactor. However, the author fails to acknowledge the significant advancements in materials science and engineering in the last few decades that have enabled the development of new materials that can withstand extreme environments, including those in the nuclear industry. For example, the use of ceramic matrix composites, which can withstand high temperatures and radiation exposure, has been proposed as a potential solution for the material challenges in molten salt reactors.

The article uses the technique of “appeal to authority” when discussing the Atomic Energy Commission’s decision to terminate the entire molten salt reactor program. The author claims that the Atomic Energy Commission justified its decision in a devastating report that listed a number of problems with the large molten salt reactor that Oak Ridge scientists had conceptualized. The author then lists the problems with materials, the challenge of controlling the radioactive tritium gas produced in molten salt reactors, the difficulties associated with maintenance because radioactive fission products would be dispersed throughout the reactor, some safety disadvantages, and problems with graphite, which is used in molten-salt-reactor designs to slow down neutrons. However, the author fails to acknowledge that the decision to terminate the program was not based on technical problems at all, but was driven solely by anti-competitive measures of the fossil fuel industry.

The MSRE was an experimental reactor that aimed to test the feasibility of the technology, and it achieved significant milestones during its four years of operation. It is essential to acknowledge the significance of this experimental reactor in advancing nuclear technology and developing the concept of molten salt reactors.

Overall, the article uses subterfuge techniques, including cherry-picking, fear-mongering, and appeal to authority, to create a negative view of molten salt reactors. Information is presented information without providing any context or significance. While the article acknowledges some technical challenges, it fails to acknowledge the significant advancements in materials science and engineering in the last few decades that have enabled the development of new materials that can withstand extreme environments. The article also fails to acknowledge that the decision to terminate the program was not solely based on technical problems but was also influenced by political and economic factors.

Review by Science Author (PhD in Psychology)

I am a distinguished science author with a PhD in Psychology. I must stress I have no experience in nuclear physics however I am an expert in writing technical papers. I am also neither for no against nuclear energy. I support the most viable solutions and will listen to all sides of a debate before making my decision.

I must say that I found Ramana’s article on molten salt reactors to be both perplexing and concerning. Although the author claims to provide an unbiased analysis of the technology, the overall tone and language used suggests a hidden agenda.

From the beginning of the article, Ramana makes it clear that molten salt reactors were “trouble in the 1960s.” This statement is not only misleading, but also irrelevant to the current state of the technology. By focusing on the past, the author attempts to discredit the potential of modern molten salt reactors without presenting any valid reasons for doing so.

Throughout the article, Ramana employs various writing techniques to drive readers away from pursuing the subject further. For instance, the author uses complex technical jargon and vague language to create a sense of confusion and uncertainty. This tactic is particularly evident in the section where Ramana discusses the safety concerns associated with molten salt reactors. By using phrases like “could potentially lead to” and “poses a risk,” the author avoids making any definitive statements about the technology, rather relaying on speculating into realms of fear, which ultimately undermines its credibility.

Furthermore, Ramana’s use of anecdotal evidence and personal opinions also raises red flags. For instance, the author cites an incident in which a molten salt reactor at Oak Ridge National Laboratory suffered a leak, but fails to provide any context or details about the incident. By presenting this incident without any explanation, the author creates an impression that molten salt reactors are inherently dangerous without any factual basis to support this assertion.

I believe that Ramana’s article is an attempt to manipulate readers’ perceptions of molten salt reactors. By using various writing techniques to hide the truth and drive readers away from pursuing the subject further, the author presents a biased and incomplete analysis of the technology.

As a science author with a PhD in Psychology, I believe that it is essential to provide readers with accurate and unbiased information, and Ramana’s article falls short of this standard.

Review by an Environmental Scientist

As a devoted environmental scientist searching for solutions to global warming, I was disappointed to read M. V. Ramana’s article on molten salt reactors. Ramana’s writing style and techniques are designed to hide the truth and dissuade readers from pursuing the subject further.

Ramana starts by discussing the history of molten salt reactors and their associated problems, including the fact that they were abandoned by the U.S. government in the 1970s. While this information is relevant, the author’s use of emotionally charged language such as “trouble” and “disaster” creates a negative connotation that is not necessarily supported by the evidence.

Furthermore, Ramana dismisses the potential benefits of molten salt reactors, such as their potential to reduce carbon emissions and provide reliable, baseload power. Instead, he focuses solely on the negative aspects of the technology, such as the potential for accidents and proliferation risks.

Ramana employs fear-mongering tactics to dissuade readers from exploring the subject further. He claims that molten salt reactors are inherently unstable and that they pose a significant risk of nuclear accidents. However, he fails to mention that molten salt reactors are designed with multiple safety features, including passive cooling systems and automatic shutdown mechanisms, to prevent any such accidents. In fact, the physics of running fission in a liquid state mean that the system can never over-heat. The same way an apple can never “fall up”. Apples only ever fall down.

Ramana claims that they were trouble in the 1960s and remain trouble today. This statement is highly misleading and lacks any scientific evidence to support it. Ramana ignores the fact that molten salt reactors have been the subject of extensive research and development over the past several decades, with numerous studies demonstrating them as a safe, clean, and cost-effective source of energy.

Ramana also uses selective and misleading information to paint a negative picture of molten salt reactors. For example, he cites a report from the Union of Concerned Scientists that raises concerns about the technology, but fails to mention that the same report acknowledges the potential benefits of molten salt reactors and recommends further research.

Overall, I found Ramana’s article to be biased against molten salt reactors and lacking in objectivity. As an environmental scientist, I believe it is important to consider all potential solutions to global warming, including those that may have drawbacks. Instead of dismissing molten salt reactors based on their past history, we should focus on the potential benefits and work to address any remaining concerns through further research and development.

The Final, Public Word

Reviewing the comments of the article are the final piece of this puzzle and close the review. There are no supporters of the arguments presented the author.

Or perhaps this is not a puzzle at all, as alluded to. Follow the money, if you can.

Here’s a list of some text extracted from the public comments to the article.

  1. “This seem more like a hack job than any evaluation of how successful molten salt reactor experiment was.”
  2. “The criticism leveled at Molten Salt Reactor technology is unjustified.”
  3. “Tell us what you really think — not what the folks you work for depend on for funding.”
  4. “The quality of the material and discussion presented, feels like something that would be written by a first year undergraduate political science STEM challenged student and not a modern Physicist or Nuclear Engineer.”
  5. “What a load of rubbish, trying to pass itself off as researched fact.”
  6. “I’m sorry but articles that look at 60’s technology and say ‘if man were meant to fly..” don’t excite me”
  7. “Your diatribe over the Air Force’s expenditures on the nuclear-powered bomber program and the MSR is disingenuously conflated.”
  8. “It is clear that the article is a conclusion in search of an argument.”

Links and References

  1. https://thebulletin.org/2022/06/molten-salt-reactors-were-trouble-in-the-1960s-and-they-remain-trouble-today/
  2. https://grist.org/climate/the-doomsday-clock-has-been-ticking-for-70-years-its-time-to-let-it-die/
  3. https://thebulletin.org/biography/m-v-ramana/
  4. https://en.wikipedia.org/wiki/M._V._Ramana
  5. https://www.world-nuclear-news.org/Articles/UK-planning-for-rapid-nuclear-expansion
  6. https://www.reuters.com/article/uk-britain-politics-nuclear-weapons-idUSKBN2B81N4
  7. https://www.theguardian.com/uk-news/2021/mar/15/cap-on-trident-nuclear-warhead-stockpile-to-rise-by-more-than-40
  8. https://www.iaea.org/publications/7192/thorium-fuel-cycle-potential-benefits-and-challenges
  9. https://energyfromthorium.com/2009/06/29/a-response-to-iaea-tecdoc-1450/

An Engineers’​ Point of View on Thorium: Unwrapping the Conspiracy

Female Nuclear Engineering Student

Preface

I have written this article exclusively for The Thorium Network(1) on the basis that I remain anonymous – my livelihood depends on it. I completed my nuclear engineering degree in the late 2000’s and shortly thereafter found a position in a semi-government owned nuclear power station – with several PWRs to look after. One year after graduating and commencing my professional career, I discovered the work of Dr. Alvin Weinberg(2) and began conducting my own research.

My anonymity is predicated on my experience during this time of intense study and learning. As a young female graduate when I shared my enthusiasm for this technology I faced harassment and derision from my male colleagues, from high level government officials and also, unfortunately, from my university professors, whom I initially turned to for help. It wasn’t long before I started to keep my research and my thoughts to myself.

I have found Women In Nuclear(3) to be most supportive and conducive to fostering and maintaining my interest in this technology, though even there it remains a “secret subject”.

So when I discovered The Thorium Network(1), I decided it was a good platform to tell my story. I look forward to the time when there is an industry strong enough to support engineers like me full time, so we can leave our positions in the old technology and embrace the new.

My Studies – No Thorium?

As a nuclear engineer, I was trained to understand the intricacies of nuclear reactions and the ways in which nuclear power could be harnessed for the betterment of humanity.

During my time in university, I learned about various types of reactors, including pressurized water reactors, boiling water reactors, and fast breeder reactors.

Phew!

However, one type of technology that was never mentioned in my coursework was the Thorium Molten Salt Burner (TMSB). Or “Thorium Burner” as my friends like to say. “TBs” for short. I like it too. Throughout my article I also refrain from using traditional words and descriptions. The nuclear industry must change and we can start by using new words.

Shortly after graduating I stumbled upon information about TBs from the work of the famous chemist and nuclear physicist, Dr. Alvin Weinberg(2). TBs have enormous potential and are the future of nuclear energy. I can say that without a doubt. I was immediately struck by the impressive advantages that TBs offer compared to the technologies that I had learned about in school. I found myself wondering why this technology had not been discussed in any of my classes and why it seemed to be so overlooked in the mainstream discourse surrounding nuclear energy and in particular in today’s heated debates on climate change.

What are TBs – Thorium Burners

To understand the reasons behind the lack of knowledge and recognition of TBs, it is first important to understand what exactly TBs are and how they differ from other types of fission technologies. TBs are a type of fission device that use Thorium as a fuel source, instead of the more commonly used uranium or plutonium. The fuel is dissolved in a liquid salt mixture*, which acts as the fuel, the coolant and the heat transfer medium for taking away the heat energy to do useful work, like spin a turbine to make electricity, or keep an aluminum smelter bath hot**. This design allows for a number of benefits that old nuclear technology does not offer.

*A little tip: the salt is not corrosive. Remember, our blood is salty but we don’t rust away do we.

** I mention aluminum smelting because it too uses a high fluorine based salt – similar to what TBs use. And aluminum is the most commonly used metal on our planet. You can see more on this process here: Aluminum Smelting(4)

Advantages of TBs

One of the most significant advantages of TBs is their inherent safety. They are “walk away safe”. Because the liquid fuel is continuously circulating, and already in a molten state, there is no possibility of a meltdown. If the core region tries to overheat the liquid fuel will simply expand and this automatically shuts down the heating process. This is known as Doppler Broadening(5).

Additionally, the liquid fuel is not pressurized, removing any explosion risk. It just goes “plop”.

These physical features make TBs much safer than traditional machines, which require complex safety systems to prevent accidents. Don’t misunderstand me, these safety systems are very good (there has never been a major incident in the nuclear industry from the failure of a safety system), but the more links you have in a chain the more chances you have of a failure. TBs go the other way, reducing links and making them safer by the laws of physics, not by the laws of man.

Another advantage of TBs is their fuel utilization. Traditional machines typically only use about 3% of their fuel before it must be replaced. In contrast, TBs are able to use 99.9% of their fuel, resulting in effectively no waste and a much longer fuel cycle (30 years in some designs). This not only makes TBs more environmentally friendly – how much less digging is needed to make fuel – but it also makes them more cost-effective.

TBs are also more efficient than traditional machines. They are capable of operating at higher temperatures (above 650 degrees C), which results in increased thermal efficiency and a higher output of electricity per unit of fuel. This increased efficiency means that TBs require even less fuel to produce the same amount of energy, making them even more a sustainable option for meeting our energy needs.

The Conspiracy

Ever wonder why all the recent “conspiracy theories” have proven to be true? It looks like Thorium is another one. It’s just been going on for a long, long time.

So why, then, was I never taught about TBs in university? The answer to this question is complex and multi-faceted, but can all be traced back to one motive: Profit. The main factor that has contributed to the lack of recognition and support for TBs is the influence of the oil and fossil fuel industries. These industries have a vested interest in maintaining the status quo to preserve their profits. They have used their massive wealth and power to lobby against the development of competitive energy sources like TBs. Fossil fuel companies have poured billions of money into political campaigns and swayed public opinion through their control of the media. This has made it difficult for TBs to receive the funding and recognition they need to advance, as the fossil fuel industries work to maintain their dominance in the energy sector.

First Hand Knowledge – Visiting Oak Ridge

During my research I took a trip to Oak Ridge National Laboratory in Tennessee, where the first experimental Thorium Burner, the MSRE – the Molten Salt Reactor Experiment – was built and operated in the 1960s. During my visit, I had the chance to speak with some of the researchers and engineers who had worked on the MSRE – yes some are still around. It was amazing to speak with them. I learnt first hand about the history of TBs and their huge potential that they have. I also learnt how simple and safe they are. They called the experiment “the most predictable and the most boring”. It did everything they calculated it would do. That’s a good thing!

The stories I heard from the researchers and engineers who worked on the MSRE were inspiring but also concerning. They spoke of the tremendous potential they saw in TBs and the promise that this technology holds for the future of meeting world energy demands. They also spoke of the political and funding challenges that they experienced first hand. The obstacles that prevented TBs from receiving the recognition and support they needed to advance. They were told directly to destroy all evidence of their work on the technology when Dr. Alvin Weinberg was fired as their director in 1972 and the molten salt program shut down. This was done under Nixon’s watch. You can even hear Nixon do this here on this YouTube(6) clip. Keep it “close to the chest” he says. I am surprised that this video is still up on YouTube considering the censorship we’ve been experiencing in this country in the past few years.

1971 Nixon Phone Call – Nixon Speech on Jobs in California – TR2016a

The experiences at Oak Ridge confirmed to me that TBs are a promising and innovative technology that have been marginalized and overlooked clearly on purpose. On purpose to protect profits of other industries. It was inspiring to hear about the dedication and passion of the researchers and engineers who worked on the MSRE, and it reinforced my belief in the potential of TBs to play a major role in meeting our energy needs in a sustainable and safe manner. I am hopeful that, with increased investment and support, TBs will one day receive the recognition and support they deserve, and that they will play a significant role in shaping the future of energy.

Moving On – What is Needed

Despite the challenges, I believe that TBs have a promising future in the world of energy from the Atom. They offer a number of unique benefits that can clearly address the any minor concerns surrounding traditional nuclear energy machines, such as safety and waste management. They are also the answer for world energy.

Countering the Vested Interests – Education and Awareness

In order for TBs to become a more widely recognized and accepted technology, more funding – both public and private – is needed to revamp the research and development conducted in the 1950’s and 1960’s. Additionally, education and awareness about the potential of TBs must be raised, in order to dispel any misconceptions and address the stigma that still surrounds nuclear energy, and to counter the efforts that are still going on even today, to stymie TBs from becoming commercial.

In order to ensure that TBs receive the support they need to succeed, it is necessary to counter the influence of the oil and fossil fuel industries and to create a level playing field for competitive energy sources. This will require a concerted effort from the public, policymakers, and the private sector to invest in and promote the development of TBs.

Retiring Aging Assets and Funding New Ones

There’s also another factor that also needs to be addressed the same way as the oil and fossil fuel industries and that is the existing industry itself. The nuclear industry has long been dominated by a few large companies, and these companies have a vested interest in maintaining the status quo and investing in traditional reactor technology. This includes funding universities to train people such as myself. This has made it difficult for TBs to gain traction and receive the funding they need to advance.

An Industry Spawned: Non Linear Threshold (LNT) and As Low As Reasonably Achievable (ALARA)

A third reason is the prodigious amount of money to be made in maintaining the apparent safety of the existing nuclear industry. This was something else I was not taught in school – about how fraudulent science using fruit flies was railroaded by the oil industry (specifically the Rockefellers) to create a cost increasing environment for the nuclear industry to prevent smaller and smaller amounts of radiation exposure. Professor Edward Calabrese(7) taught me the most about this. You must watch his interviews.

What has grown from this is a radiation safety industry – and hence a profit base – with a life of it’s own. I see it every single working day. It holds tightly to the vein that radiation must at all costs (and all profits) be kept out of the public domain. Again a proven flawed premise but thoroughly supported by the need, and greed, of the incumbent industry to maintain the status quo.

Summing Up – Our Future

In conclusion, as someone who studied nuclear engineering but never learned about Thorium Molten Salt Technology, I am disappointed that I was not given the opportunity to learn about this promising and innovative technology during my time in university. However, I am also grateful to have discovered it now, particularly with my professional experience in the sector. I am eager to see how TBs will continue to evolve and change the face of energy worldwide. With the right support and investment, I believe that TBs have the potential to play the main role in meeting our energy needs in a sustainable and safe manner, and I hope that they will receive the recognition they deserve in the years to come.

Miss A., Space Ship Mother Earth, 2023.

References and Links

  1. https://TheThoriumNetwork.com/
  2. https://en.wikipedia.org/wiki/Alvin_M._Weinberg
  3. https://win-global.org/
  4. https://aluminium.org.au/how-aluminium-is-made/aluminium-smelting-chart/
  5. https://www.nuclear-power.com/glossary/doppler-broadening/
  6. Nixon Ends Thorium https://www.youtube.com/watch?v=Mj5gFB5kTo4
  7. https://hps.org/hpspublications/historylnt/episodeguide.html

Tags

#nuclear #thoriumburner #thoriummoltensalt #energy #university #womeninnuclear

Molten Salt Fission Energy powered by Thorium – A Technological Breakthrough

Future Cities Aren't What You Think

The history and development of Molten Salt Fission Energy powered by Thorium is a fascinating one, with many twists and turns that have shaped the direction of the technology. In the 1950s, President Dwight Eisenhower initiated the “Atoms for Peace”(1) program, which was designed to break the military-industrial complex and promote the peaceful use of nuclear energy. This enthused a number of scientists, including Dr. Alvin Weinberg(2) and Dr. Eugene Wigner, who already saw the potential for using nuclear energy as a clean and abundant source of power and where dismayed at the use of their work on the Manhattan Project to kill massive numbers of women and children(3).

The development of Molten Salt Fission Technology powered by Thorium can be traced back to the 1950s and 1960s, when a group of scientists and engineers at Oak Ridge National Laboratory in Tennessee started working on the concept. They were looking for a way to improve the safety and efficiency of nuclear energy without creating a path to weapons, and they saw the potential in using thorium as a fuel. Thorium is a naturally occurring element that is abundant in many parts of the world, and it can be used to produce nuclear energy without the risk of weapons proliferation(4).

However, despite this initial enthusiasm, in the 1970’s the development of Molten Salt Fission Energy was soon stymied by a number of obstacles. One of the main challenges had been the introduction of the Linear Non Threshold (LNT) and As Low as Reasonably Achievable (ALARA) principles by the Rockefellers, who intended to limit the growth of nuclear energy in order to protect their oil businesses. This was done by feeding on the fear of the unknown among the uneducated public and by using the fraudulent work of Professor Hermann Muller from his 1928 fruit fly research(5). As John Kutsch points out in his presentation(6), this was a critical turning point in the development of fission technology.

LNT & ALARA: Linear No-Threshold & As Low As Reasonably Achievable by John Kutsch @ TEAC11

One of the key figures against the development was Hyman Rickover(7). Rickover was a bulldog of a man, determined to have pressure water fission machines running on uranium installed in his submarines. He was equally determined to redirect public funds away from the development of Molten Salt Fission Technology. This was because he couldn’t use that technology for his submarines and wanted the money for his own research programs. Despite these efforts, however, the development of Molten Salt Fission Technology powered by Thorium still continued.

A major step in this development was the creation of the Molten Salt Reactor Experiment (MSRE) at the Oak Ridge National Laboratory in Tennessee. The MSRE was designed to test the feasibility of using molten salt as both a coolant and fuel for a fission machine. The experiment was a huge success, proving that the technology was both safe and efficient. The MSRE operated from 1965 to 1969 and provided valuable data on the behavior of molten salt as a coolant and fuel. This data helped to lay the foundation for the continued development of Molten Salt Fission Technology, however 1972 saw the dismissal of Dr. Weinberg and the defunding of all Molten Salt work. Led by President Nixon, the hegemony was intent on snuffing out any competition, which Molten Salt Fission Technology clearly was.

We remain in debt to Dr. Weinberg who continued to document, speak and promote their documented achievements until his passing in 2006 – just long enough for his material to be picked up and spread via the Internet(2).

The next step in the development of Molten Salt Fission Technology was the creation of the Integral Fast Reactor (IFR) program(8). This program was initiated in the 1980s by the U.S. Department of Energy. The goal of the IFR program was to create a fission machine that was capable of recycling its own fuel, reducing the need for new fuel to be mined and demonstrating the efficient and safe use of high temperature molten systems – those ideally suited for Thorium Fission. The IFR program was a huge success, demonstrating the feasibility of closed fuel cycles for fission machines. The IFR program also provided valuable data on the behavior of fast-neutron-spectrum fission burners, which are critical components of modern fission technology. And, true to form. this program also suffered at the hands of it’s competition with the program being cancelled 3 years before it was completed in 1994 by Clinton and his oil cronies. Ironically, at the same time that excuses where being pushed through Congress to defund the program by Clinton and Energy Secretary Hazel R. O’Leary, O’Leary herself awarded the lead IFR scientist, Dr. Yoon Chang of Argonne Labs, Chicago(9) with $10,000 and a gold medal, with the citation stating his work to develop IFR technology provided “improved safety, more efficient use of fuel and less radioactive waste.”

“My children were wondering, Why are they are trying to kill the project on the one hand and then giving you this award?” Chang said with a chuckle. “How ironic. I just cannot understand how a nation that created atomic energy in the first place and leads the world in technology in this field would want to take a back seat on waste conversion,” Chang said. “I also have confidence in the democratic process that the true facts and technological rationale will prevail in the end.” Dr. Chang during an interview published 8 February 1994 by Elaine S. Povich(10), then a Chicago Tribune Staff Writer(11).

Despite these setbacks, there has been a resurgence of interest in Molten Salt Fission Energy in recent years, with a number of programs and initiatives being developed around the world. In France, the National Centre for Scientific and Technical Research in Nuclear Energy( CRNC ) is working on a number of projects related to this technology, including the development of a prototype fission burner. In Switzerland, ETH Zurich (home of Einstein’s work on E=mc^2) is also exploring the potential of Molten Salt Fission Energy, with a number of projects underway.

There are also a number of other countries that are actively pursuing Molten Salt Fission Energy, including the Czech Republic, Russia, Japan, China, the United States, Canada, and Australia. Each of these countries has its own unique approach to the technology, and is working to advance the state of the art in different ways.

In conclusion, the history and development of Molten Salt Fission Technology powered by Thorium is a fascinating subject that highlights the innovations and advancements in the field of nuclear energy. From the “Atoms for Peace” program initiated by President Dwight Eisenhower, which attracted prominent scientists like Dr. Alvin Weinberg and Dr. Eugenie Wigner, to the efforts of Hyman Rickover to redirect public funds away from the technology, this technology has faced numerous challenges along the way. The introduction of Linear Non Threshold (LNT) and As Low as Reasonably Achievable (ALARA) by the Rockefellers in an effort to stop the growth of nuclear energy and the fraudulent work of Professor Hermann Muller have also played a significant role in the history of this technology.

Despite these challenges, the potential benefits of using Thorium as a fuel source for fission burners are significant. The technology is considered safer and more efficient than traditional nuclear reactors, and it has the potential to produce much less nuclear waste. Additionally, the abundance of Thorium on Earth makes it a more sustainable source of energy than other options, such as uranium.

While much work remains to be done to fully realize the potential of Molten Salt Fission Technology powered by Thorium, the future looks bright. In the next 15 years, we can expect to see significant advancements in the technology in many parts of the world, including new designs and prototypes that will demonstrate the full potential of this technology. And, in our children’s’ children’s future, 50, years and more, we can imagine a world where Molten Salt Fission Technology is the main component of our energy infrastructure, providing clean, safe, and sustainable energy for everyone.

Totoro knows Atoms

Links and References

  1. https://thethoriumnetwork.com/2022/10/04/confidence-in-nuclear-energy-the-acceptance-of-evidence-should-replace-traditional-caution/
  2. https://www.patreon.com/posts/dr-alvin-m-of-39262802
  3. https://thethoriumnetwork.com/2022/02/26/episode-8-more-beer-more-bananas-unintended-consequences-chapter-3-part-2/
  4. https://thethoriumnetwork.com/2022/06/02/episode-21-proliferation-not-on-our-watch-unintended-consequences-chapter-8-part-5/
  5. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
  6. “John Kutsch – Using Thorium to Revolutionize the Energy Industry – YouTube.” YouTube, 11 Oct. 2018, https://www.youtube.com/watch?v=AmWvxNeBNlU
  7. https://thethoriumnetwork.com/2022/04/07/episode-13-whats-so-great-about-nuclear-power-unintended-consequences-chapter-6-part-1/
  8. https://en.wikipedia.org/wiki/Integral_fast_reactor
  9. https://www.linkedin.com/in/yoon-chang-a479205/
  10. https://www.linkedin.com/in/elaine-povich-33204813/
  11. https://www.chicagotribune.com/news/ct-xpm-1994-02-08-9402080355-story.html
  12. “Atoms for Peace.” Department of Energy, DOE, http://www.energy.gov/artificial-intelligence-and-technology-office/atoms-peace.
  13. “Linear No-Threshold Theory.” Wikipedia, Wikimedia Foundation, 17 Nov. 2020, en.wikipedia.org/wiki/Linear_no-threshold_theory.
  14. “As Low As Reasonably Achievable (ALARA) | Radiation Protection | US EPA.” Environmental Protection Agency, 19 Oct. 2020, http://www.epa.gov/radiation/as-low-reasonably-achievable-alara.
  15. “Hyman Rickover.” Wikipedia, Wikimedia Foundation, 12 Dec. 2020, en.wikipedia.org/wiki/Hyman_Rickover.
  16. “Hermann Joseph Muller.” Wikipedia, Wikimedia Foundation, 18 Nov. 2020, en.wikipedia.org/wiki/Hermann_Joseph_Muller.
Future Cities Aren't What You Think
Future Cities Aren’t What You Think

#Thorium #ThoriumMoltenSalt #ALARA #LNT #Weinberg

How U.S. Policy Shifted Energy & Technology Hegemony to China

Plant Vogtle

By James Kennedy, President of ThREEConsulting.com and John Kutsch, Executive Director of Thorium Energy Alliance, October 3, 2022.

Ordinally appearing in LinkedIn Pulse. Reproduced for educational purposes and with permission.

The Pentagon recently halted the delivery of F-35 fighter jets when it was discovered that they contained Chinese rare earth components. If the Pentagon would look a little more closely, they would find that Chinese rare earth derived components are ubiquitously distributed throughout all U.S. / NATO weapon systems.

It isn’t only U.S. weapon systems, China controls global access to rare earth metals and magnets (and other downstream critical materials) for EVs, wind turbines, and most other green- technology.

However, China’s vision is much more ambitious than controlling the supply-chain for high-tech commodities, they are leveraging their dominance into the clean energy sector. Last month Chinese authorities authorized the startup of what should be considered the world’s only Generation-5 nuclear reactor: a reactor that is inherently safe, non-proliferating, and can consume nuclear waste.

The goal of Net-Zero, and any potential economic benefits, are entirely under China’s control.

China’s leadership position in both of these areas can be traced back to irrational policies and legacy prejudices specific to thorium, a mildly radioactive element that is commonly found in heavy rare earth minerals.

The words that follow, detail the history of how China surpassed the U.S. with its own nuclear technology and displaced its historic leadership position in rare earths.

A Short History on U.S. Nuclear Development

In 1962 Nobel Prize Winning scientist Glenn Seaborg responded to President John F. Kennedy’s request for a Sustainable U.S. Energy Plan. The report titled “Civilian Nuclear Power” called for the development and deployment of Thorium Molten Salt Breeder Reactors.

Abstract
This overarching report on the role of nuclear power in the U.S. economy was requested by U.S. President John F. Kennedy in March, 1962. The U.S. Atomic Energy Commission was charged with producing the report, gaining input from individuals inside and outside government, including the Department of Interior, the Federal Power Commission, and the National Academy of Sciences Committee on Natural Resources. The study was to identify the objectives, scope, and content of a nuclear power development program in light of prospective energy needs and resources. It should recommend appropriate steps to assure the proper timing of development and construction of nuclear power projects, including the construction of necessary prototypes and continued cooperation between government and industry. There should also be an evaluation of the extent to which the U.S. nuclear power program will further international objectives in the peaceful uses of atomic energy.

Civilian Nuclear Power, a Report to the President by Glenn T Seaborg, Atomic Energy Commission, U.S.A. 1962

These ultra-safe reactors are nothing like the legacy reactors that make up today’s Light Water fleet (LWR). When deployed globally, many believe they will be the primary backbone of Green Energy – replacing the existing natural gas dispatchable power that makes up over 70% of the ‘balance-of-power’ in renewable systems.

Unfortunately, Seaborg’s plan died with Kennedy. The cold-war preference for uranium and plutonium over thorium in the 1960s and 70s, coupled with the 1980s modification to U.S. Nuclear Regulatory Committee (NRC) and International Atomic Energy Agency (IAEA) regulations that also impacted how thorium is classified and processed, led to the termination of the U.S. Thorium Molten Salt Reactor program and, effectively, the U.S. (French and Japanese) rare earth industry.

Today, China controls the downstream production of rare earth metals and magnets (used in EVs, Wind Turbines and U.S. / NATO weapon systems) and is boldly pursuing Glenn Seaborg’s plan for clean, safe energy. China’s nuclear regulatory authorities have cleared the 2MWt TMSR-LF1, China’s first Thorium Molten Salt Reactor (Th-MSR), for startup. There is no U.S. equivalent program on the horizon.

Considering that the U.S. initially developed this reactor, it begs the question of why China is leading with its commercial development. That requires a bit of a history lesson.

The goal of harnessing nuclear energy began shortly after World War II. At that time, a number of Manhattan Project scientists were tasked with quickly developing civilian nuclear power. One of the mission goals was to distribute the ongoing cost of producing bomb-making materials across our secretive Manhattan Project campuses onto a ‘civilian’ nuclear energy program. That program eventually morphed into the Atomic Energy Commission and then to the Department of Energy.

From an accounting standpoint, the DOE’s primary purpose was to divert the balance- sheet cost of our nuclear weapons programs off the military’s books.

For its entire history, 70% or more of the Department of Energy’s budget has been directed towards nuclear weapons development, maintenance, and research programs (and cleanup funding of legacy Manhattan Project sites). As the budget priorities demonstrate, solving America’s energy needs was never the first priority of the DoE. Accept that reality, and the long history of DoE mal-investment begins to make sense.

James Kennedy

Results came quickly. The first reactor designs, still in use today, are essentially ‘first concept reactors’: something more than a Ford Model T, but possibly less than a Model A, as economies of standardization were purposely never attempted in the USA, and therefore the USA never achieved the economies of scale that comes from making only 1 type of reactor model like the French and Japanese do.

The rollout of Thorium MSRs will be the equivalent of a modern-day automobile (with standardization of parts and licensing, automated assembly-line production and centralized operation permitting).

Every U.S. Light Water Reactor (LWR) facility is uniquely engineered from the ground up— maximizing its cost. Every permit application is unique. Permit requirements, timelines and outcomes are fluid. The timeline from initial funding for permitting to buildout can take decades. This equates to tying up tens of billions of dollars in financial commitments over a very long time for an uncertain outcome (a number of reactor projects were terminated during the buildout phase, with some near completion). There is an incentive to drag projects out because the EPC builders of the plan are not the operators, so they have to make all their money in the build. For example, the most recent U.S. nuclear buildout is 8 years behind schedule and at twice the estimated cost. This is a recipe for failure.

The original LWR designs, largely developed by Alvin Weinberg, boiled water under immense pressure to turn a shaft, similar to the turbines of a coal fired power plant. The use of water as a coolant is one of the largest contributors to LWR system complexity, risk and costs.

Water’s liquid phase range at normal pressure is 1 to 99°C. Water’s natural boiling temperature does not generate sufficient pressure to economically operate traditional steam turbines so all LWR type reactors use high pressure to force water to remain liquid at higher temperatures. The need to contain coolant failures in such a high-pressure operating environment greatly effects the safety and cost of the entire system. All water-cooled reactors have an inherent design risk, no matter how small, built in.

Weinberg knew there must be a better design, but government and military support rushed in to prop up the development of the Light Water Reactor design. Admiral Hyman Rickover was the leading advocate, quickly developing the first nuclear-powered submarine. The U.S. Army also got in the game, developing a prototype mobile field reactor. The Air Force, feeling left out, looked to Alvin Weinberg to develop a nuclear-powered aircraft.

The Air Force Reactor project required that he develop something entirely new; keeping in mind that this reactor would operate inside an airplane with a crew and live ordinance. These are truly remarkable constraints in terms of weight, size, safety, and power output. Weinberg’s insight led to a reactor that used a liquid fuel instead of solid fuel rods. It was simply known as Alvin’s 3P reactor, all he needed was a Pot, a Pipe and a Pump to build his new reactor design.

Elegant in its simplicity, its safety was based on physics and geometry – not pumps, values, backup generators and emergency protocols.

The Air Force Reactor program was able to prove out all requirements of the program. It was / is possible to build a nuclear-powered bomber aircraft and keep the crew ‘reasonably safe’. However, the development of nuclear-launch capable submarines and the Inter-Continental Ballistic Missile supplanted the need for a nuclear bomber.

The original Air Force Reactor Experiment evolved into the Molten Salt Reactor Experiment (MSRE) developed at Oak Ridge National Lab. This moderated reactor operated for 19,000 hours over 5 years. The reactor was designed to run on a Thorium-uranium mixed fuel. Prior to termination of the project, all operational, safety, material science, and corrosion issues were resolved.

More importantly, the MSRE project proved that you could build a revolutionary nuclear reactor that eliminated all of the inherent safety concerns of the LWR while minimizing the spent fuel issue (what some people call nuclear waste).

The new reactor, commonly known as a Molten Salt Reactor (MSR), used heated salt with a liquid-to-boil temperature range that can exceed 1000°C (a function of chemistry), to act both as coolant and fuel. The recirculation of the liquid fuel/coolant allowed for the fuller utilization (burn up) of the actinides and fission products. The salt’s higher temperature operation that did not need water for cooling, eliminated the need to operate under extreme pressures.

The Molten-Salt Reactor Experiment

This salt coolant cannot overheat, and meets the definition of having inherent safety – MSR’s are inherently safe reactors that eliminate scores of redundant systems, significantly increasing the simplicity of the overall system while lowering risks and cost and increasing its safety profile.

Another advantage is that MSR’s higher operating temperatures allow it to utilize liquid CO2 (or other high compression gases), thus eliminating H2O steam from the system. Moving away from the Rankine turbine system to much smaller and more efficient Brayton turbines delivers a much higher energy conversion at lower costs. The real promise of the MSR was that it produced process heat directly, for hydrogen, desalination, fertilizer, steel production – avoiding inefficient electricity production all while utilizing 100% of the heat energy directly.

Another beneficial feature is the reduced quantity and timeframe of storage requirements for spent fuel (aka: nuclear waste). Inherent to their design, MSRs use-up nuclear fuel far more efficiently than LWRs, less than 1% of the original fuel load can end up as spent fuel, and due to acceleration of decay under the recirculation of the fuel/coolant load the residual spent fuel decays to background (radiation levels equal to the natural environment) in as little as 300 years.

LWRs utilize about 3% of the available energy in solid fuels and the spent fuel does not decay to background levels for tens of thousands of years.

The most promising MSR design feature was found to be that fission criticality (a sustained chain reaction) is self-regulating due to the reactor’s geometry and self-purging features that dumped the fuel/coolant into holding tanks and regulated fission rates (again, based on geometry) if the reactor exceeded design operating temperatures. These features made a reactor “meltdown” impossible and “walk-away safe”.

Because the salt coolant has such a high liquid phase the system can be air cooled (in any atmosphere: the artic, the desert , even versions for space). The elimination of water from the system eliminates the primary failure-point of all conventional nuclear reactors, including explosive events that can occur with water cooled reactors.

NOTE: LWR reactor explosions are due to disassociation of water into hydrogen and oxygen when exposed to Zirconium at high temperatures during coolant system failure. The zirconium fuel casings act as a catalyst, causing a massive rapid atmospheric expansion. This atmospheric expansion was the cause of the explosive event associated with the Fukushima disaster.

The elimination of any high-pressure hydrogen event excludes the potential for widespread radiation release and thus, the need for a massive containment vessel.

Alvin Weinberg’s reactor design also solved another challenge of that time. Prior to the mid- 1970s the U.S. government believed that global uranium resources were very scarce. This new reactor, fueled with a small amount of fissile material added to the Thorium salt, could breed new fuel. In fact, it turned out that the reactor could also be used to dispose of weapons grade plutonium or even spent fuel (stockpiled nuclear waste).

ABSTRACT
The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power.

ORNL – Thorium MSRs From Using Dismantled Weapons, 1991

Unlike natural mined Uranium, which needed intensive processing to concentrate the fissile U235, Thorium is widely abundant and a byproduct of phosphate, titanium, zircon and rare earth ores. Thorium can be used in a nuclear reactor after minimal processing, all benefits that were unheeded in the 60s and 70s.

Since MSRs run at a much higher temperature than LWRs, the greatest benefit would be the direct utilization of thermal energy for industrial processes requiring thermal loads (allowing for the carbon free production of steel, cement and chemicals that make up nearly 25% of all CO2 emissions). Possibilities seemed endless.

Glenn Seaborg’s 1962 report to President Kennedy devised a national plan for sustainable civilian nuclear power. Evaluating the relative safety, efficiency, and economy of the Th-MSR vs. the LWR, Seaborg recommended that the U.S. phase out LWRs in favor of Alvin Weinberg’s Th- MSR Thorium “breeder reactor”.

So why didn’t this reactor design prevail? Considering its economic advantages, the Th-MSR would cause the phase out of the existing nuclear fleet and would be more cost competitive than coal or natural gas (and could replace petroleum via a nuclear-powered Fischer Tropes process), it is no wonder that the reactor was rejected by the prevailing political-economy of cold-war industrialism and what was primarily a hydro-carbon based economy.

The production cost for these reactors was a key concern. The relative cost of assembly line built MSRs reactor would be a fraction of traditional LWRs (these are small modular reactors). As such, MSRs could bring installed cost per megawatt in line with coal fired power plants.

The construction cost advantages are numerous: inherent safety based on geometry (translates into simplicity of design and construction), small, modular, assembly-line built, roll-off permitting, air cooled (eliminating the primary critical failure risk of LWRs and, thus the possibility for a wide-spread radiation event), no need for a massive containment vessel, and small Bryton turbines.

The Thorium fuel would be a byproduct of rare earths (no enrichment is necessary). Rare earths would be a byproduct of some other mined commodity.

Regardless of the economic opposition, there was also a geopolitical conflict. Fueled with Thorium, the MSR did not produce plutonium (fissile bomb making materials) or anything else that was practically usable for the production of nuclear weapons. The reactor was highly proliferation resistant—and who would not like that?

The Nixon Administration, for one. American politics in 1968 were largely influenced by the U.S.’s relative status in the nuclear weapons arms race with Russia. Nixon, a nuclear hawk, killed the MSR program and committed the country to the development of fast spectrum breeder reactors (the program was a total failure), circa 1972.

As early as 1970 a new, safe, clean, cost-efficient, and self-generating energy economy was technically possible but was sacrificed to the objectives of the cold war and preservation of the existing LWR fleet.

If the U.S. had followed Seaborg’s advice the entire world could be pulling up to the curb of Net-Zero today and U.S. energy hegemony would be preserved long into the future.

Instead, today, China is leading the world in the development of Thorium fueled reactors and Thorium based critical materials. They intend to use it as a geopolitical tool: the Chinese version of “Atoms for Peace”. This would end U.S. energy hegemony.

Sadly, most Americans can’t fathom how that would impact their standard of living and create a domestic energy source that would cement their position in the world.

But the story of how Thorium politics and policy derailed U.S. energy and national security interests does not end there.

The Story of Rare Earths

A decade later, the production and proliferation of nuclear weapons material became an international matter of concern. In 1980 the NRC and IAEA collaborated on regulations to ratchet down on the production and transportation of uranium. The regulatory mechanism 10 CFR 40, 75 applied the rules and definitions specific to the uranium mining industry to all mining activity, using the 1954 Atomic Energy Act terminology of nuclear “source material” to define the materials to be controlled.

Uranium, plutonium and Thorium are all classified as nuclear fuel: source material. However, Thorium cannot be used for nuclear weapons (Thorium is fertile, not fissile).

James Kennedy

This caused a new and unintended problem. At the time, nearly 100 percent of the world’s supply of heavy rare earths contained Thorium in their mineralization and were the byproduct of some other mined commodity. Consequently, when these commodity producers extracted their target ores (titanium, zirconium, iron, phosphates, etc.) they triggered the new regulatory definition of ‘processed or refined ore (under 10 CFR 40)’ for these historical rare earth byproducts, causing the Thorium-bearing rare earth mineralization to be classified as “source material”.

In order to avoid the onerous costs, regulations, and liabilities associated with being a source material producer these commodity producers disposed of these Thorium-bearing resources along with their other mining waste and continue to do so today.

Currently, in the U.S. alone, the annual quantity of rare earths disposed of to avoid the NRC source material regulations exceeds the non-Chinese world’s demand by a factor of two or more. The amount of Thorium that is also disposed of with these rare earths could power the entire western hemisphere if utilized in MSRs.

The scale of this potential energy waste dwarfs the collective efforts of every environmentalist on a global basis (including all of the World Economic Forum programs being forced on farmers and consumers across the globe).

As a result, all downstream rare earth value chain companies in the U.S. and IAEA compliant countries lost access to reliable supplies for these rare earth resources.

Capitalizing on these regulatory changes, China quickly became the world’s RE producer.

World Rare Earth Production

During the 1980s, China increased its leverage by initiating tax incentives and creating economically favorable manufacturing zones for companies that moved rare earth technology inside China.

U.S., French and Japanese companies were happy to off-shore their technology and environmental risks (mostly related to Thorium regulations). The 1980 regulatory change and China’s aggressive investment policies allowed China to quickly acquire a foothold in metallurgical and magnet capabilities.

For example: China signed rare earth supply contracts with Japan that required Japan to transfer rare earth machinery and process technology to mainland China while establishing state-sponsored acquisition strategies for targeted U.S. metallurgical and magnetic manufacturing technologies.

By 1995 the U.S. had sold its only NdFeB magnet producer, and all of its IP, to what turned out to be Deng Xiaoping’s family.

In just two decades China moved from a low value resource producer to having monopoly control over global production and access to rare earth technology metals.

By 2002 the U.S. became 100% dependent on China for all post-oxide rare earth materials. Today, China’s monopoly is concentrated on downstream metallics and magnets. In 2018, Japan, the only country that continued to produce rare earth metals outside of China, informed the U.S. government that they no longer make “new” rare earth metals.

Japan stated the reason for terminating all new rare earth metal production is “China controls price”.

Thorium policy was the leading culprit in America’s failure to lead the world in the evolution of the rare earth dependent technologies. From its powerful vantage point, China was able to force technology companies to move operations inside China. From a practical standpoint all past and future breakthroughs in rare earth based material science and technology migrate to China.

Cumulative Patent Deficit USD vs China
Cumulative Patent Deficit USD vs China

The best example of this is Apple. Because the iPhone is highly rare earth dependent, Apple was forced to manufacture it in China. In January 2007 Apple introduced its revolutionary iPhone. By August of the same year high quality Chinese knockoffs were being produced by a largely unknown company named Huawei. By 2017 Huawei was outselling Apple on a worldwide basis.

This story is not uncommon. It is typical of what happens to Western companies who move manufacturing inside China. Apple knew this but had no choice: developing a domestic rare earth value chain was impossible for any single company, industry, or even country by this point in the game.

Today China’s monopoly power allows them to control the supply chain of the U.S. military and NATO defense contractors.

From its diminished vantage point, the Pentagon is somehow unable to understand that China’s monopoly is a National Program of Industrial and Defense Policy.

Instead, the Pentagon pretends that this is a problem that can be solved by ‘the free market’, naively betting U.S. national security on a hodgepodge of junior rare earth mining ventures with economically questionable deposits, no downstream metal refining capabilities and no access to the critical heavy rare earths.

The Pentagon twice bet our national security on a geochemically incompatible deposit in California. The first time was in 2010. The Pentagon was forewarned that the deposit controlled by Molycorp, was incompatible with U.S. technology and defense needs, due to its lack of heavy rare earths, and that its business plan was “unworkable”. The company was bankrupt in just 5 years.

In 2020, despite the same deposit’s intractable deficiencies, Chinese ownership and a commitment to supply China, the Pentagon backed a venture capital group ‘developing’ the deposit under the name MP Materials. The new company has made the same unfulfillable promises as its predecessor but further domestic downstream capability into metallics is unlikely.

MP may remain profitable as long as it continues to sell concentrate and oxides into China, but profitable downstream refining into metallics / magnets is not possible when accounting for China’s internal cost, scale and subsidy advantages (and control over price).

The Pentagon, like so many other investors, fails to accept the reality of China’s monopoly.

It is both an economic monopoly, and a geopolitical monopoly.

Consequently, there have been over 400 bankruptcies in rare earth projects since 2010. Only two western controlled rare earth mines went into production: Molycorp, mentioned above, and Lynas, the Australian company Lynas. Lynas’s success is mostly due the current environment of higher prices (ultimately under China’s control) and a modestly superior rare earth chemistry when compared with the Molycorp Mt. Pass deposit. Lynas survived the 2015 downturn through direct subsidies form the Japanese government, price supports and debt forgiveness from its customers and investors.

Today the U.S. and all western governments find themselves outmaneuvered in rare earths (and other critical materials), the green economy and Thorium nuclear energy.

China is leading the world in the development of Thorium MSRs. Their first two-megawatt prototype reactors was recently cleared for startup (August, 2022). China’s MSR program was built on massive direct investment by the Chinese government and the direct transfer of technology and technical support by the U.S. Department of Energy.

China’s first to market strategy can be expected to conform to their tendency to vertically and horizontally monopolize industries, like rare earths. As such, China is poised to control the global roll out of this technology—displacing the U.S. as the global energy hegemon.

Because the U.S. failed to rationalize Thorium policy it has lost control of its destiny in rare earths and the future of safe, clean, affordable, and sustainable nuclear energy.

Unchallenged, China will be the global champion of net-zero energy.

What are the domestic obstacle to achieving Thorium MSR?

Opposition is directly linked to the cold war policies of the past and the intersection of legacy energy producers (LWR nuclear, coal, natural gas and petroleum) and renewable energy producers. These energy sectors individually and collectively are the political constituents of the DoE. So, despite the opposing interests between each of these energy sectors, the threat of Th-MSR expresses itself as DoE opposition (that is beginning to change).

The other problem with Th-MSR development is the regulatory environment. Regulations are more about protecting legacy interests than public safety. In nuclear regulation it is all about protecting the legacy fleet from new entrants.

For example, the company Nuscale spent over $600 million, over a decade, to certify a new nuclear reactor design. This expense was not to build a reactor. It was the regulatory cost of permitting a new reactor design that (highly conforms to existing LWR designs).

What people overlook is that the real cost and risk in new reactor design is a function of time, money and investor expectations.

In the case of Nuscale, the regulatory and construction cost of a new reactor will be in the multi-billion-dollar range, with over a decade of investor money tied up in the highly speculative investment (speculative in regulatory outcomes and customer orders against existing and alternative technologies) makes this the highest investment risk imaginable.

Accounting for the magnitude of these risks and return expectations, this type of investment is at the outer bounds of what is achievable — in the absence of a monopoly. That is why public investment was always necessary in the nuclear industry. China understands this and has acted accordingly.

What are the domestic obstacles to a domestic rare earth value chain?

The current rare earth issue has not been a mining issue but rather a regulatory issue. The U.S. continues to mine enough rare earths, as the byproduct of some other commodity, to exceed the entire non-Chinese world demand. These resources would quickly become available if the U.S. rationalized its Thorium policy.

The larger downstream problems resulting from China’s massive overinvestment and negligible return requirements in its rare earth industry have yet to express themselves, as the U.S. government blindly funds non-compatible, non-viable, non-economic downstream projects.

Without a production tax credit to off-set Chinese subsides, all of these projects will fail.

Balancing the comparative cost of capital and investor return expectation also must be answered.

Solutions

There are potential solutions. For rare earths there is a production tax credit bill that could off- set China’s generous subsidies, zero-cost capital and production cost advantages (comparative labor & environmental costs). There may also soon be proposed legislation to solve the Thorium problem. This same proposal would also provide a funding and development platform for a U.S. based Thorium MSR reactor industry.

There are solutions, but time is running out.


To learn more about advancing U.S. interests in the development of MSRs and ending China’s rare earth monopoly please visit the ThoriumEnergyAlliance.com or ThREEConsulting.com.


Authors

James Kennedy is an internationally recognized expert, consultant, author, and policy adviser on rare earths and Thorium energy.

John Kutsch is the executive director of Thorium Energy Alliance, an organization dedicated to the advancement of Thorium for power and critical materials applications.


References and Links

  1. http://threeconsulting.com/
  2. https://www.linkedin.com/in/james-kennedy-5622bb50/
  3. https://thoriumenergyalliance.com/
  4. https://www.linkedin.com/in/kutschenergy/
  5. https://www.linkedin.com/pulse/how-us-policy-shifted-energy-technology-hegemony-china-james-kennedy/
  6. https://www.politico.com/news/2022/09/07/pentagon-suspends-f-35-deliveries-china-00055202
  7. https://en.wikipedia.org/wiki/Glenn_T._Seaborg
  8. https://pastdaily.com/2018/10/29/october-29-1961-dr-glenn-seaborg-has-a-word-or-two-about-nuclear-energy-meet-the-press-past-daily-reference-room/
  9. https://www.osti.gov/servlets/purl/1212086
  10. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
  11. https://www.augustachronicle.com/story/news/2021/11/04/georgia-power-nuclear-reactors-plant-vogtle-cost-doubles-energy-costs/6286729001/
  12. https://en.wikipedia.org/wiki/Hyman_G._Rickover
  13. https://energyeducation.ca/encyclopedia/Aircraft_reactor_experiment
  14. https://en.wikipedia.org/wiki/Molten-Salt_Reactor_Experiment
  15. https://www.youtube.com/watch?v=tyDbq5HRs0o
  16. https://www.nuclear-power.com/nuclear-engineering/thermodynamics/thermodynamic-cycles/rankine-cycle-steam-turbine-cycle/
  17. https://www.energy.gov/ne/articles/sandia-researchers-deliver-power-grid-new-brayton-cycle-technology
  18. https://threeconsulting.com/mt-content/uploads/2021/04/th_msrs_heufrom_dismantled_weapons.pdf
  19. https://web.archive.org/web/20151107033818/https:/inldigitallibrary.inl.gov/sti/2664750.pdf
  20. https://www.nrc.gov/reading-rm/doc-collections/cfr/part075/index.html
  21. https://threeconsulting.com/mt-content/uploads/2021/04/chiarepatent.pdf
  22. https://en.wikipedia.org/wiki/Deng_Xiaoping
  23. https://www.congress.gov/115/crpt/hrpt676/CRPT-115hrpt676.pdf
  24. https://threeconsulting.com/mt-content/uploads/2021/04/sme-rareearthsdeceptionwebv.pdf
  25. https://www.world-nuclear-news.org/Articles/Chinese-molten-salt-reactor-cleared-for-start-up
  26. https://www.nextbigfuture.com/2022/08/chinas-2-megawatt-molten-salt-thorium-nuclear-reactor-has-start-up-approval.html
  27. https://threeconsulting.com/mt-content/uploads/2021/04/casdoetech.pdf
  28. https://www.congress.gov/bill/117th-congress/house-bill/5033/text?r=164&s=1

#rareearths #nuclearenergy #nationalsecurity #nationaldefense #china #criticalminerals #departmentofenergy #departmentofdefense #EV #netzero #netzerocarbon #greentech #geopolitics #renewableenergy #cobalt #nickel #graphite #lithium #weapons #defensetechnology #mining #miningindustry #miningnews #greensteel #neodymium #terbium #pentagon #hegemony #monopoly #intellectualproperty #windenergy #solarenergy #hydrogen #thorium #thoriumenergyallianc #energy #scienceandtechnology #aviationindustry #aviationnews #airforce

Safeguards for the Lithium Fluoride Thorium Reactor: A Preliminary Nuclear Material Control and Accounting Assessment – by Oak Ridge National Laboratories – Publication ORNL/TM/2022/2394

Oak Ridge National Labs Entrance

The most modern reproduction and replication of the work of the 1960’s undertaken by Flibe Energy Inc. is reviewed by Oak Ridge National Laboratories in a private public partnership. (ORNL is managed by UT-Battelle).

Today we spotlight the most recent production from Oak Ridge National Laboratories in Tennessee, USA, (ORNL). The report is all about Molten Salt Fission Technology Powered by Thorium. This concise 54 page report is akin to the ORNL report produced 44 years ago in August 1978, entitled Molten-Salt Reactors Efficient Nuclear Fuel Utilization without Plutonium Separation and further extends the ORNL work reported in The Development Status of Molten Salt Breeder Reactors from August 1972. (It appears that August is the month of important reports by ORNL). This later behemoth 434 page report is the mother lode of information for all work done at ONRL regarding Molten Salt Fission Energy Technology powered by Thorium. Anyone looking at investing into this technology must make it a priority read – all of the work has been done before. The report can be found further below in this post.

This most recent report on this technology has been produced by the authors, Dr. Richard L. Reed, Dr. Louise G. Evans and Donald N. Kovacic, B.Sc. All are senior scientists involved with Molten Salt Technology at ORNL.

Before we discuss the report, first we’ll discuss why it’s important to define new terminology for nuclear energy sector.

For generations massive amounts of negative press and target funding has branded the word nuclear as simply bad. And let’s face it. Nuclear Physics is complicated, and so conversations get complicated pretty quickly too. Let’s just look at the elements we can play with.

Out of 118 elements in the Periodic Table, 80 are stable having 339 isotopes, leaving 38 elements – those heavier than lead – as unstable. These 38 elements have over 3,000 possible isotope existent states. Hence thousands of unstable isotopes, lead to 10’s of thousands of combinations of decay, neutron absorption, and possible fission events, from neutrons both fast – high energy particles, and thermal – low energy particles, and then hundreds of other non responsive isotopes of non responsive elements that exhibit different behaviours over time and distance. For example water is better for absorbing fast neutrons and lead is better for thermal neutrons. Boron-10 absorbs neutrons, whilst boron-11 does not. Neutrons bounce off, are reflected by graphite, beryllium, steel, tungsten carbide, and gold (There are more too). OK, so the picture is clear – fission energy gets complicated very quickly.

DOE Explains…Isotopes

Remember too, that this all started in a race to build nuclear weapons – not to make energy. Weapons should all be dismantled and destroyed. USA and UK should follow in the footsteps of South Africa who dismantled their last bomb in 1989. Today the USA and UK combined have enough firepower to destroy humanity entirely 150 times over. We are thankful that Molten Salt technology was pursued with such vigor precisely because it cannot make weapons. It only makes energy.

The Thorium fuel cycle is “intrinsically proliferation-resistant”

The International Atomic Energy Agency, 2005

Thorium fuel cycle — Potential benefits and challenges IAEA, May 2005


Hans Blix, former head of IAEA explaining why Thorium, and Molten Salt Fission Energy Technology doesn’t even need to be addressed by the IAEA.

Former head of IAEA, Hans Blix, discussing why Thorium is superior

Why South Africa Dismantled Its Nuclear Weapons

by Evelyn Andrespok, March 2010

We are also thankful that nuclear weapons are now illegal (why did THAT take so long?)

Treaty on the Prohibition of Nuclear Weapons


So back to the nomenclature.

We call it Fission, not nuclear.

We call them Machines, not reactors. (By the way, there’s no reactions going on, and indeed in the core region fuel is “burned” according to the physics text books. In Fission, atoms are split, so “splitter” is the correct term!)

We say Molten Salt Fission Energy TechnologyMSFT. Not anything else. Calling it LFTR ties the technology to a specific fluid-fuel type. Even the company FLIBE are considering changing the Beryllium metal to Sodium metal (the BE means Beryllium in their company’s name).

And Fission – Nuclear Energy – is effectively Carbon Free. Even Bill Gates knows this.

Bill Gates getting into Molten Salt


The latest ORNL report is excellent at defining the challenges already identified 50 years ago. The net result is that ORNL have made recommendations to modify the Flibe design thus eliminating any chance of weapons production from Molten Salt Fission Energy Technology powered by Thorium.

Some of these recommendations are:

  • Use multiple, smaller decay vessels for salt distribution for emergency shutdown events.
  • Install stringent material monitoring systems with tamper evident features for fuel processing.
  • Use batch fuel processing and not continuous for better inventory controls.
  • Recombine fuel elements to increase gamma activity of the fuel processing cycle.
  • Allow U232 production to increase hence increasing the self protection mechanism.
  • Eliminate the decay fluorinator entirely by allowing protactinium to decay in the fuel salt.
  • Remove physical access to the UF6 stream by have vessels immediately adjacent to each other.

These, and other recommendations, effectively define Molten Salt Fission Technology powered by Thorium as proliferation proof.

You can see the full report here:



The latest ORNL report must be read in conjunction with a 1978 report, also by ORNL staff – and also released in the month of August – where proliferation concerns of the earlier designs where addressed. In that report the authors J. R. Engel, W. R. Grimes, W. A. Rhoades and J. F. Dearing allowed the build up of U232 to create self protection whilst still maintaining machine performance – “denatured”, as they called it.

Here is that report, Technical Memorandum TM 6413, from August 1978:

ORNL TM 6413 August 1978 Molten-Salt Reactors for Efficient Nuclear Fuel Utilization Without Plutonium Separation


Here’s one of the authors of that report – John Richard “Dick” Engel – shortly before his passing in 2017.

Dick Engel & Syd Ball – ORNL Molten Salt Reactor Engineer Interview shot for THORIUM REMIX

The following documents should also be read together with ORNL report 2022/2394 to ensure full understanding:

ORNL TM 3708 1964 Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964

This report summarized the work leading up to the Molten Salt Reactor Experiment, that ran from 1965 to 1969 – the “most boring experiment ever. It did everything we expected it to do.”, said by Dr. Sydney Ball.

The Molten-Salt Reactor Experiment

ORNL TM 4658 1972 Chemical Aspects of MSRE Operations

This report debunks corrosion myths surrounding Molten Salt Technology.

ORNL TM 4812 August 1972 Development Status of Molten-Salt Breeder Reactors

This is the report that ended in the program being shut down. The USD 1 billion funding request was too obvious to ignore and many people realised what impact this would have on existing business interests in energy.

Why MSRS Abandoned ORNL Weinberg’s Firing by Bruce Hoglund

A concise summary of the facts behind the closure of the Molten Salt Program at Oak Ridge.

Here is the 2015 assessment report referenced in ORNL report 2022/2394.

Electric Power Research Institute – Program on Technology Innovation: Technology Assessment of a Molten Salt Reactor Design – The Liquid Fluoride Thorium Reactor (LFTR)

Electric Power Research Institute Report Abstract

EPRI collaborated with Southern Company on an independent technology assessment of an innovative molten salt reactor (MSR) design—the liquid-fluoride thorium reactor (LFTR)—as a potentially transformational technology for meeting future energy needs in the face of uncertain market, policy, and regulatory constraints. The LFTR is a liquid-fueled, graphite-moderated thermal spectrum breeder reactor optimized for operation on a Th-233U fuel cycle. The LFTR design considered in this work draws heavily from the 1960s-era Molten Salt Reactor Experiment and subsequent design work on a similar two-fluid molten salt breeder reactor design. Enhanced safety characteristics, increased natural resource utilization, and high operating temperatures, among other features, offer utilities and other potential owners/operators access to new products, markets, applications, and modes of operation. The LFTR represents a dramatic departure from today’s dominant and proven commercial light water reactor technology. Accordingly, the innovative and commercially unproven nature of MSRs, as with many other advanced reactor concepts, presents significant challenges and risks in terms of financing, licensing, construction, operation, and maintenance.

This technology assessment comprises three principal activities based on adaptation of standardized methods and guidelines: 1) rendering of preliminary LFTR design information into a standardized system design description format; 2) performance of a preliminary process hazards analysis; and 3) determination of technology readiness levels for key systems and components. The results of the assessment provide value for a number of stakeholders. For utility or other technology customers, the study presents structured information on the LFTR design status that can directly inform a broader technology feasibility assessment in terms of safety and technology maturity. For the developer, the assessment can focus and drive further design development and documentation and establish a baseline for the technological maturity of key MSR systems and components. For EPRI, the study offers an opportunity to exercise and further develop advanced nuclear technology assessment tools and expertise through application to a specific reactor design.

The early design stage of the LFTR concept indicates the need for significant investment in further development and demonstration of novel systems and components. The application of technology assessment tools early in reactor system design can provide real value and facilitate advancement by identifying important knowledge and design performance gaps at a stage when changes can be incorporated with the least impact to cost, schedule, and licensing.


Thorium Reactor Graphic by PopSci

Finally, a reminder. Why all the fuss about Thorium Molten Salt anyway? What did those giants of nuclear energy see starting way back in 1947 that we don’t see today? It’s because of this chart by ANSTO of Australia. It’s a little known – public – secret, that Australia, part of the Generation IV Forum, but ironically staunchly anti nuclear, is also one of the strongest countries in technology development for Molten Salt Fission Energy powered by Thorium.

ANSTO Energy Density
ANSTO Energy Density (LWR = Solid Fission; MSR = Molten Salt Fission)

We hoped you enjoyed this article, produced free for all advocates and students of Molten Salt Fission Energy powered by Thorium. If you like this work and want to see more, please support this work by going to our contributions page, where you can then find our Patreon account.


Links and References

  1. https://www.ornl.gov/
  2. https://en.wikipedia.org/wiki/UT%E2%80%93Battelle
  3. https://flibe-energy.com/
  4. https://www.worldatlas.com/articles/how-many-elements-are-there.html
  5. https://en.wikipedia.org/wiki/Isotope
  6. https://www.osti.gov/biblio/5289038-molten-salt-reactors-efficient-nuclear-fuel-utilization-without-plutonium-separation
  7. https://www.osti.gov/biblio/5688579-molten-salt-reactors-efficient-nuclear-fuel-utilization-without-plutonium-separation
  8. https://digital.library.unt.edu/ark:/67531/metadc1033578/
  9. https://www.osti.gov/biblio/4099994-status-us-program-development-molten-salt-breeder-reactor
  10. https://www.linkedin.com/in/richard-reed-98769430/
  11. https://www.linkedin.com/in/louisegevans/
  12. https://www.linkedin.com/in/donald-kovacic-7b468a6/
  13. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/fundamental-particles/neutron/shielding-neutron-radiation/
  14. https://www.worldatlas.com/articles/how-many-elements-are-there.html
  15. https://en.wikipedia.org/wiki/Treaty_on_the_Prohibition_of_Nuclear_Weapons
  16. https://en.wikipedia.org/wiki/South_Africa_and_weapons_of_mass_destruction
  17. https://wp.towson.edu/iajournal/articles/2010-2019/fall-2010-issue/why-south-africa-dismantled-its-nuclear-weapons/
  18. https://www-pub.iaea.org/mtcd/publications/pdf/te_1450_web.pdf
  19. https://splash247.com/bill-gates-joins-nuclear-powered-shipping-push/
  20. https://www.epri.com/
  21. https://www.southerncompany.com/
  22. https://www.epri.com/research/products/000000003002005460
  23. https://newenergyandfuel.com/http:/newenergyandfuel/com/2011/11/04/thorium-fueled-nuclear-plant-to-be-built/
  24. https://www.youtube.com/watch?v=tyDbq5HRs0o
  25. https://www.legacy.com/us/obituaries/knoxnews/name/john-engel-obituary?id=16904544
  26. https://www.youtube.com/watch?v=_yO0Qk-_Gms
  27. https://www.linkedin.com/in/bruce-hoglund-52194814/
  28. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
  29. https://www.popsci.com/technology/article/2010-08/thorium-reactors-could-wean-world-oil-just-five-years/
  30. https://www.gen-4.org/

#FissionEnergy #NuclearEnergy #TheThoriumNetwork #Fission4All #RadiationIsGood4U #GotThorium #ORNL #OakRidge #MSRE #MoltenSaltFissionEnergy #Thorium

A Crib Sheet for Journalists and Students of Thorium

Thorium Periodic Table

Are you a journalist – or a student – looking for the inside on Liquid Fission Thorium? Unlimited energy. Secure. Reliable. Well this page is for you.

We’ve been asked many times for a summary of resources or key people to speak with.

Are we biased? Of course we are. Read on and you’ll know why. You’ll probably want to Join Us too.


A Future Powered by Thorium is our objective. We are leveraging the billions of USD in today’s value and millions of hours invested over 50 years ago in a technology that is demonstrably superior to anything else we have today.

Here’s a summary of that work from Oak Ridge National Laboratories:

The Molten-Salt Reactor Experiment

We have this YouTube and other useful 3rd party links on our website here:

The Thorium Knowledge Base

See this chart of energy density from an Australian government website. Everything else pales into insignificance when compared to Liquid Fission Machines (also called MSR Molten Salt Reactors).

Here’s a recent article from Germany we translated into Japanese. It contains a lot of information on China’s progress also. China is replicating the 1960’s USA program, publicly announcing in 2011 investing USD 3,3 billion and 700 engineers for the work. This is not about reinventing the wheel, it’s just remembering what we’ve done before. Remember also China and Australia worked together to create a replacement for the super alloy metal “Hastelloy”. This super metal was created in the 1950’s in the USA for their advanced nuclear programs and is only made today by two companies in the world – one in the USA and Mitsubishi. Now China has an alternative.

The article also includes information on Japan’s liquid fission project –  FUJI.

Here’s a list of must-do-interviews for background on Liquid Fission Thorium Energy or subjects related, such as radiation safety, the effects of Chernobyl and Linear No Threshold theory.

Professor Geraldine Thomas
Director of the Chernobyl Tissue Bank, the world’s preeminent knowledge base for all things related to the real effects of that industrial accident. Prof. Thomas is became staunchly pro-nuclear due to her directorship. George Monbiot – a former Greenpeace anti-nuc activist, and now no longer in Greenpeace and strongly pro nuclear – after an interview he also had with Prof Thomas he had as a writer for the UK’s Guardian. 

George Monbiot on Wikipedia

Geraldine Thomas on Wikipedia

Chernobyl Tissue Bank

Mr. Daniel Roderick
Former President and CEO of Westinghouse and then Toshiba Energy Systems. Danny steered the sale of  Westinghouse for Toshiba, securing a positive, multi billion USD outcome for Japan. Danny was also the leader of negotiations to secure USD 50 billion in funding for a new nuclear build in Türkiye (derailed by the 2016 attempted coup in Türkiye). Mitsubishi subsequently submitted (and withdrew)  a nuclear build in Sinop, Northern Türkiye. Rosatom (Russia) is now building a nuclear power station in Akkuyu, southern Türkiye.

Dr. Adi Paterson
Dr. Paterson is the former head of ANSTO and an advocate of Liquid Fission Thorium Energy Technology. During his 9 year tenure at ANSTO, Dr. Paterson steered Australia to membership of the Generation IV forum, kind of the United Nationals for advanced fission designs. This is no mean feat given Australia’s lack of much to do with nuclear energy. 

Generation IV Forum

Dr. Resat Uzman
Director of nuclear energy systems at Figes AS, of Türkiye. Dr. Uzman has more than 40 years experience in all things nuclear, Türkiye and rare earths – the materials where Thorium is often found bound with.

Professor Berrin Erbay
Senior lecturer and former dean of mechanical engineering at Osmangazi University, Türkiye Prof. Erbay has been liaising with the professors in Japan for several decades. You can see one of her presentations on the status of molten salt technology in Japan here on Youtube: 

4. Nesil Nükleer Reaktör Teknolojileri Toplantısı

Mr. Phumzile Tshelane
Mr. Tshelane is a former CEO of NECSA South Africa, now holds various directorships across a wide range of industrial sectors. His position as head of a state owned nuclear technology development company gives him a particular view point on commercialisation of nuclear energy technologies.

S3E6 Africa4Nuclear: The Story of Thorium

Ms. Rana Önem
President of the Thorium Student Guild. You should hear from someone who is dedicating their life to Thorium Molten Salt and who is just starting out in their career. You can see Rana interviewing Dr. Uzman here. Follow the links at the end of the article to see her role as president of the Guild: 


An important subject to cover is linear no threshold theory – a fraudulent model of radiation management that, unfortunately, has spawned an industry of radiation protection and radiation safety keen on maintaining its own survival. This results in massive, unnecessary overspending on nuclear builds. Professor Edward Calabrese is a leading expert on this subject and you can watch a series of interviews with Ed here: 

The History of the Linear No-Threshold (LNT) Model Episode Guide

Together with Professor Jerry Cuttler, Ed presents clearly, laying out how LNT has demonstrably been proven false. (And consequently those that died at Fukushima died unnecessarily, as a direct result of inappropriately applying that theory).

What would become of nuclear risk if governments changed their regulations to recognize the evidence of radiation’s beneficial health effects for exposures that are below the thresholds for detrimental effects?

Here’s the background on the Türkiye Japan University (TJU). Our founder met with the Japanese Ambassador to Türkiye in 2021 and confirmed Japanese support for technology development of Molten Salt is easier should such work be included in the curriculum of the TJU. Early planning stages of the TJU can be seen here below. The vice president of TJU is a senior professor at the Tokyo University responsible for nuclear engineering.

The “only” obstacle to adoption of Liquid Fission Thorium is the incumbent energy industries. It’s a significant obstacle, and it would be naive to think otherwise. Operating much like the tobacco industry has done in the past, lobbyists and funding at all levels occurs to stymie any potential competitors.

It is predicted that the 7 Trillion USD per year fossil fuel energy market would shrink to only 1 Trillion per year with a society powered by Thorium. This is an obvious disincentive for incumbents to do anything but to obfuscate and delay.

You can see that obfuscation at work here with both Wired and the Bulletin in 2019 on USA presidential candidate Andrew Yang:

Fact-check: Five claims about thorium made by Andrew Yang – Bulletin


Andrew Yang Wants a Thorium Reactor by 2027. Good Luck, Buddy – Wired

The half truths and lies are difficult, if not impossible, for the layperson to identify. We contacted one of Andrew’s advisory team members and confirmed Andrew supports Liquid Fission Thorium, and was committing several billion USD to have USA’s energy footprint 100% on the technology by 2030. Technically very doable. Politically, not.

It is important to recognise the ecological and economic footprint of energy from Thorium (a substance as common as lead) as being much smaller than even uranium. In the article link above (the Japanese translation one) there are three slides that demonstrate the significant benefits Thorium has over uranium.  These slides are repeated below.

Thorium and Uranium Compared Slide 1 of 3
Thorium and Uranium Compared Slide 1 of 3
Thorium and Uranium Compared Slide 2 of 3
Thorium and Uranium Compared Slide 2 of 3
Thorium and Uranium Compared Slide 3 of 3
Thorium and Uranium Compared Slide 3 of 3

The IAEA report TE1450 from 2005 is an excellent read. It says Thorium is not an issue and is a good prospect for energy – back in 2005. Once the physics is proven it doesn’t need to be “upgraded” every 6 months like an iPhone.

And yes, Thorium doesn’t explode. “Walk away safe” is a suitable term for Liquid Fission Technology.

Here’s the former head of IAEA, Hans Blix, stating that “Thorium shouldn’t be treated like uranium”. 

Thorium Nuclear Power and non Proliferation Hans Blix IAEA ThEC13

See more Hans Blix on Thorium Molten Salt Fission Energy

Attached below is a brief summary of “Why Thorium didn’t take off” by Bruce Hoglund, 5 November 2010. It’s an excellent starting point for data gathering and research – and not “Wikipedia”. Wikipedia was used as partial evidence why the United Kingdom should’t use Thorium for energy. Some 10 years ago in a UK government 1.5m GBP funded “study”, rubbished Thorium and directly contradicted the advice of the IAEA’s TE 1450 report.


The information here is but the tip of the iceberg, however it gives an excellent starting point. There are of course, many, many others who can contribute considerably for a balanced and objective article or articles on Thorium for our energy future. And with today’s communications technology, such conversations are only but a few key strokes away.

Burning stuff is old tech. Star Trek technology is where we have to be now. Fission does that, especially Liquid Fission Thorium Energy Technology.

Uncle Martin would be proud. Nanu, nanu!


Links and References

  1. https://thethoriumnetwork.com/join-us/
  2. https://www.youtube.com/watch?v=tyDbq5HRs0o
  3. https://thethoriumnetwork.com/about-thorium/thorium-knowledge-base/
  4. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
  5. https://thethoriumnetwork.com/2022/05/03/%e3%83%91%e3%83%bc%e3%83%95%e3%82%a7%e3%82%af%e3%83%88%e3%83%86%e3%82%af%e3%83%8e%e3%83%ad%e3%82%b8%e3%83%bc-%e3%83%90%e3%82%a4%e3%83%aa%e3%83%b3%e3%82%ac%e3%83%ab%e8%a8%98%e4%ba%8b-%e6%97%a5%e6%9c%ac/
  6. https://en.wikipedia.org/wiki/Geraldine_Thomas
  7. https://en.wikipedia.org/wiki/George_Monbiot
  8. https://www.chernobyltissuebank.com/contact-us
  9. https://www.linkedin.com/in/danielroderick/
  10. https://www.linkedin.com/in/adi-paterson/
  11. https://www.gen-4.org/
  12. https://figes.com.tr/en/home
  13. https://www.linkedin.com/in/resat-uzmen-051a824/
  14. https://thethoriumnetwork.com/2022/05/17/interview-3-dr-resat-uzmen-nuclear-technology-director-of-figes-part-of-the-thorium-student-guild-interview-series-leading-to-nuclear/
  15. https://www.youtube.com/watch?v=NEDK_MAWQD0
  16. https://www.linkedin.com/in/l-berrin-erbay-61b04745/
  17. https://www.linkedin.com/in/phumzile-tshelane-3014945a/
  18. https://www.necsa.co.za/
  19. https://www.youtube.com/watch?v=6MsgDx8K-t4
  20. https://www.linkedin.com/in/rana-%C3%B6nem-57a14718b/
  21. https://thethoriumnetwork.com/join-us/student-guild/
  22. https://www.linkedin.com/in/ed-calabrese-697a1119/
  23. https://thethoriumnetwork.com/2022/02/12/the-big-deceit-episode-6-unintended-consequences-chapter-2/
  24. https://hps.org/hpspublications/historylnt/episodeguide.html
  25. https://www.linkedin.com/in/jerry-cuttler-26106763/
  26. https://www.linkedin.com/posts/jerry-cuttler-26106763_what-would-become-of-nuclear-risk-if-governments-activity-6870517584475824128-qr3W
  27. https://www.youtube.com/watch?v=eJSeQIW-X44
  28. https://thebulletin.org/2019/12/fact-check-five-claims-about-thorium-made-by-andrew-yang/
  29. https://www.wired.com/story/andrew-yang-wants-a-thorium-reactor-by-2027-good-luck-buddy/
  30. https://www.youtube.com/watch?v=F4m10Y0rWBY
  31. https://www.youtube.com/results?search_query=hans+blix+thorium
  32. https://www.linkedin.com/in/bruce-hoglund-52194814/

#Journalist #CribSheet #Thorium #Interviews #MoltenSaltFissionEnergy #Rosatom #Japan #Turkey #China #LNT

Episode 22 – The Pros of LFTRs. Why They Are So Cool – Unintended Consequences – Chapter 8 Part 6

Russia Considering Thorium for Waste Burning

Advantages of LFTRs

Many of these also apply to MSRs that use Uranium)

  • No CO2 emissions.
  • Produce only a small amount of low radioactivity waste that is benign in 350 years.
  • The liquid fuel, besides being at 700-1000 degrees C, contains isotopes fatal to saboteurs.
  • Do not require water cooling, so hydrogen and steam explosions are eliminated.
  • Don’t need periodic refuelling shutdowns because the fuel is supplied as needed and the by-products are constantly removed. (LWRs are shut down every 2-3 years to replace about ¼ of the fuel rods, but, LFTRs can run much longer.)
  • Thorium 232 is far more abundant than U-235. Well suited to areas where water is scarce.
  • Do not need huge containment domes because they operate at atmospheric pressure. Breed their own fuel.
  • Can’t “melt down” because the fuel/coolant is already liquid, and the reactor can handle high temperatures.
  • Fluoride salts are less dangerous than the super-heated water used by conventional reactors, and they could replace the world’s coal-powered plants by 2050.
  • Are suitable for modular factory production, truck transport and on-site assembly.
  • Create the Plutonium-238 that powers NASA’s deep space exploration vehicles.
  • Are intrinsically safe: Overheating expands the fuel/salt, decreasing its density, which lowers the fission rate.

Also at play is Doppler Broadening

Fighting Doppler Broadening a.k.a the Doppler Effect
  • If there is a loss of electric power, the molten salt fuel quickly melts a freeze plug, automatically draining the fuel into a tank, where it cools and solidifies.
  • Highly efficient. At least 99% of a LFTR’s Thorium is consumed, compared to about 4% of the uranium in LWRs.
  • Are highly scalable – 10 megaWatt to 2,000 MW plants. A 200 MW LFTR could be transported on a few semi-trailer trucks.

Micro-Reactors by Brian Yang, 16 January 2019

  • Cost less than LWRs. Can consume plutonium.
Rising Costs of Old Nuclear Energy Systems
Rising Costs of Old Nuclear Energy Systems by Atkins Engineering 2014

Can thorium reactors dispose of weapons-grade plutonium? by Michael Irving

Brattle Group study shows value of US nuclear industry

U.S. funds projects on tackling waste from advanced nuclear plants by Valerie Volcovici  and Timothy Gardner

  • Although our current LWRs are very safe and highly efficient, LFTRS are even more productive, and they cannot melt down.
  • Data from the Australian Nuclear Society and Technological Organization of the Australian government:
    + Thorium fuelled molten salt reactors have an energy return ratio of 2,000 to 1. [Also called Energy Density]
    + Our current LWRs that are fuelled with uranium have an energy return ratio of 75 to 1.
    + Coal and gas have an energy return ratio of about 30 to 1. Wind has an energy return ratio of 4 to 1.
    + Solar has an energy return ratio of 1.6 to 1.

Phasing Out Coal Will Require Germany to Build New Gas Plants, by Jesper Starn, June 22, 2021

Big Backpedal: A Week After Shutting its Coal-Fired Plants Germany Forced to Reopen Them, by StopTheseThings, April 25, 2021

“Officials say the weather is partly to blame.”

Germany on Coal Energy Highs and Wind Energy Lows

Germany: Coal tops wind as primary electricity source by DW

Germany 2021: coal generation is rising, but the switch to gas should continue, by Simon Göss, 23 September 2021

“The increase in coal-fired power generation is thus mainly driven by low renewable generation, increased electricity demand and partly also by the high gas prices this year.”

Simon Göss

Coming up next week, Episode 23 – Can’t Afford a Model T? How About a LFTR?


Links and References

  1. Next Episode – Episode 23 – Can’t Afford a Model T? How About a LFTR
  2. Previous Episode – Episode 21 – No Big Noises Here. How a LFTR is Proliferation Proof
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://lftrsuk.blogspot.com/2011/07/radioactive-nuclear-waste-from-lftrs.html
  8. https://www.nuclear-power.com/glossary/doppler-broadening/
  9. https://analyticalscience.wiley.com/do/10.1002/gitlab.15855
  10. https://www.nextbigfuture.com/2019/01/micro-reactors-as-cheap-as-natural-gas-without-air-pollution.html
  11. https://www.linkedin.com/in/brian-wang-93645
  12. https://thebulletin.org/2019/02/the-pentagon-wants-to-boldly-go-where-no-nuclear-reactor-has-gone-before-it-wont-work/
  13. https://www.lanl.gov/discover/publications/1663/2019-february/megapower.php
  14. https://www.world-nuclear-news.org/C-Brattle-Group-study-shows-value-of-US-nuclear-industry-1007157.html
  15. https://www.reuters.com/business/environment/us-funds-projects-tackling-waste-advanced-nuclear-plants-2022-03-10/
  16. https://www.linkedin.com/in/valerie-volcovici-086b094/
  17. https://www.linkedin.com/in/timothy-gardner-1448953/
  18. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
  19. https://www.bloomberg.com/news/articles/2021-06-21/phasing-out-coal-will-require-germany-to-build-new-gas-plants#xj4y7vzkg
  20. https://www.linkedin.com/in/jesper-starn-03b7681b8/
  21. https://stopthesethings.com/2021/04/25/big-backpedal-a-week-after-shutting-its-coal-fired-plants-germany-forced-to-reopen-them/
  22. https://www.dw.com/en/germany-coal-tops-wind-as-primary-electricity-source/a-59168105
  23. https://energypost.eu/germany-2021-coal-generation-is-rising-but-the-switch-to-gas-should-continue/
  24. https://www.linkedin.com/in/simon-g%C3%B6%C3%9F-aa98885a/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

Episode 21 – Proliferation? Not on Our Watch – Unintended Consequences – Chapter 8 Part 5

Nuclear Explosion

Taking the Easiest Course of Action

It would be very difficult to make a weapon from LFTR fuels because the gamma rays emitted by the U-232 in the fuel would harm technicians and damage the bomb’s electronics.

Uranium could be stolen during enriching, production of pellets, delivery to the reactor, and for long-term storage, but LFTRs only use external uranium to start the reaction, after which time uranium is produced within the reactor from thorium.

The Most Radioactive Places on Earth

The United Kingdom tried unsuccessfully over a period of 10 years, from the 1950’s to the 1960’s, to produce a weapon from Thorium. They gave up and switched to the uranium path. Still today, 1.5 tonnes of Thorium remain stored from that program. This is enough to power the entire UK for 10 years – Carbon Free.

The USA fired one Thorium driven test in 1955 (MET/Operation Teapot), but the results so poor and complications so high they did no further.

A 1 GW LWR [Light Water Reactor] requires about 1.2 tons of uranium per year, but a 1 GW LFTR only needs a one-time “kick-start” of 500 pounds [225 kg] of U-235 plus 1 ton of Thorium per year during its 60 year lifespan.

The half-life of Thorium 232 is 14 billion years, so it is not hazardous due to its extremely slow decay.

The primary physical advantage of Thorium fuel is that it uniquely makes possible a breeder reactor that runs with slow neutrons, otherwise known as a thermal breeder reactor. These reactors are often considered simpler than the more traditional fast-neutron breeders.

IAEA 2005

[When Thorium 232 takes up a neutron, the subsequent decay takes two paths: mostly U233 and some U232. The U233 provides most of the useful energy production by Fission. U232 provides protection against proliferation as several decay daughters are high energy gamma emitters – meaning they burn out silicon chips. For example the gamma spike coming from Thallium 208 is 2.6 MeV. ]

[Shielding using advanced materials and methods, such as distance (air), lead, and water can reduce radiation energy to levels where dosages are at recommended levels around 10 microSiverts per hour or 100 milliSiverts per year.

Note that there have been many examples of doses much higher than this causing no concern, such as 350 microSiverts per hour received by Albert Stevens for over 20 years.

Radiation shielding is a mass of absorbing material placed between yourself and the source of radiation in order to reduce the radiation to a level that is safer for humans.

This is measured by using a concept called the halving thickness – the thickness of a material required to halve the energy of the radiation passing through it.

Remember also, that Radiation decreases with distance in accordance with the inverse square law.]

Radiation Halving Thickness Chart

Material100 keV200 keV500 keV
Air3555 cm4359 cm6189 cm
Water4.15 cm5.1 cm7.15 cm
Carbon2.07 cm2.53 cm3.54 cm
Aluminium1.59 cm2.14 cm3.05 cm
Iron0.26 cm0.64 cm1.06 cm
Copper0.18 cm0.53 cm0.95 cm
Lead0.012 cm0.068 cm0.42 cm
Radiation Halving Thickness Chart

Quotes by Albert Einstein

“I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.”

“Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger,” 

“I made one great mistake in my life-when I signed the letter to President Roosevelt recommending that atom bombs be made but there was some justification-the danger that the Germans would make them.”

“The release of atomic power has changed everything except our way of thinking … the solution to this problem lies in the heart of mankind. If only I had known, I should have become a watchmaker.” – Albert said this in 1945, after the US bombed Japan with nuclear weapons and killed over 200,000 innocent civilians. Approximately 50,000 of them where children, 100,000 where women, and the balance the elderly. There were minor military casualties.

“Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius — and a lot of courage — to move in the opposite direction.”

“Peace cannot be kept by force. It can only be achieved by understanding.”

“Two things are infinite: the universe and human stupidity; and I’m not sure about the universe.”

“He who joyfully marches to music rank and file, has already earned my contempt. He has been given a large brain by mistake, since for him the spinal cord would surely suffice. This disgrace to civilisation should be done away with at once. Heroism at command, how violently I hate all this, how despicable and ignoble war is; I would rather be torn to shreds than be a part of so base an action. It is my conviction that killing under the cloak of war is nothing but an act of murder.”

Albert Einstein, the Grandfather of Fission Energy

Energy production is the only viable way away from militarisation of Fission Energy. In the same way fire is harnessed in a fireplace to warm our homes or make our steels, Invisible Fire, Fission Energy, Energy from the Atom, does the same.

We are blessed by people like Alvin Weinberg who dedicated their lives to the cause after witnessing how their scientific endeavours were employed with such militaristic zeal for death and destruction.

“Weinberg realised that you could use Thorium in an entirely new kind of reactor, one that would have zero risk of meltdown. … his team built a working reactor … and he spent the rest of his 18-year tenure trying to make Thorium the heart of the nation’s atomic power effort. He failed. Uranium reactors had already been established, and Hyman Rickover, defacto head of the US nuclear program, wanted the plutonium from uranium-powered nuclear plants to make bombs. Increasingly shunted aside, Weinberg was finally forced out in 1973.”

Richard Martin, 2009, Wired Magazine

Russia Investigates Thorium for Power Generation


Coming up next week, Episode 22 – The Pros of LFTRs. Why are they So Cool?


Links and References

  1. Next Episode – Episode 22 – The Pros of LFTRs. Why are they So Cool?
  2. Previous Episode – Episode 20 – Got a LFTR? What’s Under the Hood
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://en.wikipedia.org/wiki/Thorium_fuel_cycle#Uranium-232_contamination
  8. https://en.wikipedia.org/wiki/Albert_Stevens
  9. https://www.youtube.com/watch?v=TRL7o2kPqw0
  10. https://modernsurvivalblog.com/nuclear/nuclear-radiation-shielding-protection/
  11. https://en.wikipedia.org/wiki/Radioactive_contamination
  12. https://en.wikipedia.org/wiki/Gamma_ray
  13. https://www.nuclear-power.com/nuclear-engineering/materials-nuclear-engineering/properties-of-water/water-as-gamma-radiation-shielding/
  14. https://www.flickr.com/photos/mitopencourseware/3776104498/in/photostream/
  15. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/radiation/shielding-of-ionizing-radiation/shielding-gamma-radiation/
  16. https://en.wikipedia.org/wiki/Uranium-232
  17. https://patreon.com/posts/39262802
  18. https://en.wikipedia.org/wiki/Albert_Einstein
  19. https://www.vintag.es/2016/04/amazing-black-and-white-photographs.html
  20. https://inktank.fi/five-fascinating-facts-you-didnt-know-about-albert-einstein/
  21. https://www.history.com/news/9-things-you-may-not-know-about-albert-einstein
  22. https://www.neimagazine.com/news/newsrussia-investigates-thorium-4986083/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

Episode 20 – Got a LFTR? What’s Under the Hood – Unintended Consequences – Chapter 8 Part 4

Liquid Fluoride Thorium Reactor by fmilluminati

How a LFTR works

In one type of LFTR, a liquid Thorium salt mixture circulates through the reactor core, releasing neutrons that convert Thorium 232 in an outer, shell-like “jacket” to Thorium 233. Thorium 232 cannot sustain a chain reaction, but it is fertile, meaning that it can be converted to fissile U-233 through neutron capture, also known as “breeding.”

Space LFTR by fmilluminati
Newcastle Molten Salt Burner

When a Uranium 233 atom absorbs a neutron, it fissions (splits), releasing huge amounts of energy and more neutrons that activate more Thorium 232. In summary, a LFTR turns Thorium-232 into U-233, which thoroughly fissions while producing only 10% as much “waste” as LWRs produce.

How Thorium “Burns”

“Thorium energy can help check CO2 and global warming, cut deadly air pollution, provide inexhaustible energy, and increase human prosperity. Our world is beset by global warming, pollution, resource conflicts, and energy poverty. Millions die from coal plant emissions. We war over mideast oil. Food supplies from sea and land are threatened. Developing nations’ growth exacerbates the crises. Few nations will adopt carbon taxes or energy policies against their economic self-interests to reduce global CO2 emissions. Energy cheaper than coal will dissuade all nations from burning coal. Innovative Thorium energy uses economic persuasion to end the pollution, to provide energy and prosperity to developing nations, and to create energy security for all people for all time.”

Dr. Robert Hargraves

Dr. Robert Hargraves has written articles and made presentations about the liquid fluoride Thorium reactor and energy cheaper than from coal – the only realistic way to dissuade nations from burning fossil fuels. His presentation “Aim High” about the technology and social benefits of the liquid fluoride Thorium reactor has been presented to audiences at Dartmouth ILEAD, Thayer School of Engineering, Brown University, Columbia Earth Institute, Williams College, Royal Institution, the Thorium Energy Alliance, the International Thorium Energy Association, Google, the American Nuclear Society, the President’s Blue Ribbon Commission of America’s Nuclear Future, and the Chinese Academy of Sciences. With coauthor Ralph Moir he has written articles for the American Physical Society Forum on Physics and Society: Liquid Fuel Nuclear Reactors (Jan 2011) and American Scientist: Liquid Fluoride Thorium Reactors (July 2010). Robert Hargraves is a study leader for energy policy at Dartmouth ILEAD. He was chief information officer at Boston Scientific Corporation and previously a senior consultant with Arthur D. Little. He founded a computer software firm, DTSS Incorporated while at Dartmouth College where he was assistant professor of mathematics and associate director of the computation center. He graduated from Brown University (PhD Physics 1967) and Dartmouth College (AB Mathematics and Physics 1961).

Dr. Robert Hargraves – Aim High! @ TEAC3

“This book presents a lucid explanation of the workings of Thorium-based reactors. It is must reading for anyone interested in our energy future.”

Leon Cooper, Brown University physicist and 1972 Nobel laureate for superconductivity

“As our energy future is essential I can strongly recommend the book for everybody interested in this most significant topic.”

Dr. George Olah, 1994 Nobel laureate for carbon chemistry

Amazon 5 Star comments on “Thorium – energy cheaper than coal” by Dr. Robert Hargraves

  • Why Thorium must be the Future of Energy, Robert Orr Jr.
  • Fascinating read with lots of calcs you can perform yourself, DGD
  • Thorium, what we should have done, B. Kirkpatrick
  • Fantastic book about this little known alternative nuclear energy source, ChicagoRichie
  • Should be in the hands of every science class and on top of every policy maker’s desk, R. Kame
  • A MUST HAVE resource on energy generation alternatives, George Whitehead
  • Get Free Energy, Abolish CO2, End Energy Dependency, Clean – Up the Planet and Make a Fortune. Kindle Customer
  • Essential education, Ames Gilbert
  • A solution for global climate change, Lawrence Baldwin
  • Wonderful book, written in text book style, Dot Dock
  • The place to go for Thorium info. Gerald M. Sutliff
  • Global warming killer, Red Avenger
  • Thorium reactors can be civilizations future for energy, Hill Country Bob
  • Thorium fuel in a breeder reactor implies limitless future energy, Fred W. Hallberg
  • On the ESSENTIAL BOOK LIST, James38

The half-life of Thorium 232, which constitutes most of the earth’s Thorium, is 14 billion years, so it is not hazardous due to its extremely slow decay. – Dr. George Erickson

Liquid Fluoride Thorium Reactors, American Scientist, 2010

“Given the diminished scale of LFTRs, it seems reasonable to project that reactors of 100 megawatts can be factory produced for a cost of around $200 million.”

Dr. Robert Hargraves – American Scientist, July 2010

Coming up next week, Episode 21 – No Big Noises Here. How a LFTR is Proliferation Proof.


Links and References

  1. Next Episode – Episode 21 – No Big Noises Here. How a LFTR is Proliferation Proof
  2. Previous Episode – Episode 19 – Want a Lift? Grab a LFTR
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://www.deviantart.com/fmilluminati/art/Liquid-Fluoride-Thorium-Reactor-500641963
  8. https://en.wikipedia.org/wiki/Thorium
  9. https://engineering.dartmouth.edu/
  10. https://www.brown.edu/
  11. https://www.earth.columbia.edu/
  12. https://www.williams.edu/
  13. https://www.rigb.org/
  14. https://thoriumenergyalliance.com/
  15. http://www.thoriumenergyworld.com/organization.html
  16. https://talksat.withgoogle.com/
  17. https://www.ans.org/
  18. https://www.energy.gov/articles/blue-ribbon-commission-americas-nuclear-future-charter
  19. https://english.cas.cn/
  20. https://engage.aps.org/fps/home
  21. https://www.bostonscientific.com/en-US/Home.html
  22. https://www.adlittle.com/en
  23. https://home.dartmouth.edu/
  24. https://www.youtube.com/watch?v=BOoBTufkEog
  25. https://www.amazon.com/THORIUM-energy-cheaper-than-coal/dp/1478161299
  26. https://www.nobelprize.org/prizes/physics/1972/cooper/biographical/
  27. https://en.wikipedia.org/wiki/Leon_Cooper
  28. https://www.nobelprize.org/prizes/chemistry/1994/olah/biographical/
  29. https://en.wikipedia.org/wiki/George_Andrew_Olah
  30. https://www.americanscientist.org/article/liquid-fluoride-thorium-reactors
  31. https://www.americanscientist.org/author/robert_f._hargraves
  32. https://www.linkedin.com/in/roberthargraves/
  33. https://www.americanscientist.org/author/ralph_moir
  34. https://www.linkedin.com/in/ralph-moir-3a8b2615/
  35. https://www.americanscientist.org/article/not-so-fast-with-thorium
  36. https://energycentral.com/c/ec/lftr-american-scientist
  37. https://www.linkedin.com/in/charles-barton-b081499/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #RobertHargraves #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

Episode 19 – Want a Lift? Grab a LFTR – Unintended Consequences – Chapter 8 Part 3

Dr Alvin Weinberg at ORNL Stylised

What’s a LFTR?

A thoriumfuelled MSR [Molten Salt Reactor] is a Liquid Fluoride Thorium Reactor – a LFTR

Pronounced ‘LIFTER
A Lifetime of power in the palm of your hand [with Thorium]

With a half-life of 14 billion years, Thorium-232 is one of the safest, least radioactive elements in the world. Thorium-232 emits harmless alpha particles that cannot even penetrate skin, but when it becomes Th-233 in a Molten Salt Reactor, it becomes a potent source of power. Sunlight, living at high altitude and the emissions from your granite counter-top or a coal-burning plant are more hazardous than thorium-232.

LFTRs are even more fuel-efficient than uranium- fuelled MSRs, and they create little waste because a LFTR consumes close to 99% of the thorium-232. LWRs reactors consume just 3% of their uranium before the rods need to be changed. That’s like burning just a tiny part of a log while polluting the rest with chemicals you must store for years.

Just one pound of thorium can generate as much electricity as 1700 tons coal, so replacing coal-burning plants with LFTRs would eliminate one of the largest causes of climate change. That same pound (just a golf ball-size lump), can yield all the energy an individual will ever need, and just one cubic yard of thorium can power a small city for at least a year. In fact, if we were to replace ALL of our carbon-fuelled, electrical power production with LFTRs, we would eliminate 30 to 35% of all man-made greenhouse gas production.

From 1977 to 1982, the Light Water Reactor at Shippingport, Pennsylvania was powered with thorium, and when it was eventually shuttered, the reactor core was found to contain about 1% more fissile material (U233/235) than when it was loaded. (Thorium has also fuelled the Indian Point 1 facility and a German reactor.)

India, which has an abundance of thorium, is planning to build Thorium-powered reactors, as is China while we struggle to overcome our unwarranted fear of nuclear power. And in April, 2015, a European commission announced a project with 11 partners from science and industry to prove the innovative safety concepts of the Thorium-fuelled MSR and deliver a breakthrough in waste management.

Please read Thorium: the last great opportunity of the industrial age by David Archibald

Thorium: the last great opportunity of the industrial age, by David Archibald

To Slow Global Warming, We Need Nuclear Power by By Lamar Alexander and Sheldon Whitehouse

China Ramps Up New Nuclear Reactor Construction

China is Determined
China Nuclear Build Map – World Nuclear Association

Supplies

Thorium is four times as plentiful as uranium ore, which contains only 1% U-235. Besides being almost entirely usable, it is 400 times more abundant than uranium’s fissile U-235. Even at current use rates, uranium fuels can last for centuries, but thorium could power our world for thousands of years.

Just 1 ton of thorium is equivalent to 460 billion cubic meters of natural gas. We already have about 400,000 tons of thorium ore in “storage”, and we don’t need to mine thorium because our Rare-Earth Elements plant receives enough thorium to power the U. S. every year. Australia and India tie for the largest at about 500,000 tons, and China is well supplied.

A 1 GW LWR requires about 1.2 tons of uranium each year, but a 1 GW LFTR only needs a one-time “kick start” of 500 pounds of U-235 plus 1 ton of thorium each year.

Waste and Storage

Due to their high efficiency, LFTRs create only 1% of the waste that conventional reactors produce, and because only a small part of that waste needs storing for 400 years – not the thousands of years that LWR waste requires – repositories much smaller than Yucca mountain would easily suffice.

Furthermore, LFTRs can run almost forever because they produce enough neutrons to make their own fuel, and the toxicity from LFTR waste is 1/1000 that of LWR waste. So, the best way to eliminate most nuclear waste is to stop creating it with LWRs and replace them with reactors like MSRs or LFTRs that can utilize stored “waste” as fuel.

With no need for huge containment buildings, MSRs can be smaller in size and power than current reactors, so ships, factories, and cities could have their own power source, thus creating a more reliable, efficient power grid by cutting long transmission line losses that can run from 8 to 15%. Unfortunately, few elected officials will challenge the carbon industries that provide millions of jobs and wield great political power. As a consequence, thorium projects have received little to no help from our government, even though China and Canada are moving toward thorium, and India already has a reactor that runs on 20% thorium oxide.

GE Hitachi, ARC to license joint reactor in Canada; Siemens installs first live 3D-printed part

3D Printed Nuclear Reactor Core Microreactor ORNL, 25 May 2020

India on the road map of tripling nuclear power capacity

After our DOE signed an agreement with China, we gave them our MSR data. To supply its needs while MSRs are being built, China is relying on 27 conventional nuclear reactors plus 29 Generation III+ (solid fuel) nuclear plants that are under construction. China also intends to build an additional fifty-seven nuclear power plants, which is estimated to add at least 150 GigaWatts (GW) by 2030.

Nuclear Scientists Head to China to Test Experimental Reactors, by Stephen Stapczynski

China to start building 6-8 new nuclear reactors in 2018

“Global increase in nuclear power capacity in 2015 hit 10.2 gigawatts, the highest growth in 25 years driven by construction of new nuclear plants mainly in China…. We have never seen such an increase in nuclear capacity addition, mainly driven by China, South Korea and Russia,.. It shows that with the right policies, nuclear capacity can increase.”

Dr Fatih Birol, Executive Director, International Energy Agency, Paris Conference, Reuters, 28 June 2016
Russia Building the Akkuyu Nuclear Power Plant in Turkey

“When the China National Nuclear Power Manufacturing Corporation sought investors in 2015, they expected to raise a modest number of millions but they raised more than $280 billion.”

Dr. Alex Cannara

MIT: China Is Beating America In Nuclear Energy

In 2016, the Chinese Academy of Sciences allocated $1 billion to begin building LFTRs by 2020. As for Japan, which began to restart its reactors in 2015, a FUJI design for a 100 to 200 MW LFTR is being developed by a consortium from Japan, the U. S. and Russia at an estimated energy cost of just three cents/kWh. Furthermore, it appears that five years for construction and about $3 billion per reactor will be routine in China.

Fail-Safe Nuclear Power, By Richard Martin

China spending US$3.3 billion on molten salt nuclear reactors for faster aircraft carriers and in flying drones, December 6, 2017 by Brian Wang

Westinghouse’s eVinci would look a lot like a LFTR in operation. See more next week on how a LFTR works.

Westinghouse Electric’s parent company wants to put the nuclear company on the market by Anya Litvak

Westinghouse HQ
eVinci by Westinghouse

Coming up next week, Episode 20 – Got a LFTR? Lets Look Under the Hood


Links and References

1. Next Episode – Episode 20 – Got a LFTR? Lets Look Under the Hood
2. Previous Episode – Episode 18 – Pass the Salt Dear – How Fission Gets Rock Solid Stability
3. Launching the Unintended Consequences Series
4. Dr. George Erickson on LinkedIn
5. Dr. George Erickson’s Website, Tundracub.com
6. The full pdf version of Unintended Consequences
7. https://en.wikipedia.org/wiki/Shippingport_Atomic_Power_Station
8. https://wattsupwiththat.com/2015/05/16/thorium-the-last-great-opportunity-of-the-industrial-age/
9. https://www.amazon.com/David-Archibald/e/B00I32BANS/
10. https://www.nytimes.com/2016/12/21/opinion/to-slow-global-warming-we-need-nuclear-power.html?
11. https://www.linkedin.com/in/lamar-alexander-68290688/
12. https://www.linkedin.com/in/alexander-whitehouse/
13. https://neutronbytes.com/2020/07/11/china-ramps-up-new-nuclear-reactor-construction/
14. https://world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx
15. https://www.reutersevents.com/nuclear/ge-hitachi-arc-license-joint-reactor-canada-siemens-installs-first-live-3d-printed-part?
16. https://www.ornl.gov/news/3d-printed-nuclear-reactor-promises-faster-more-economical-path-nuclear-energy
17. https://www.thehindubusinessline.com/economy/india-on-the-roadmap-of-tripling-nuclear-power-capacity/article64295841.ece
18. https://www.thestatesman.com/india/indian-nuclear-reactor-at-kaiga-sets-world-record-for-continuous-operation-1502700962.html
19. https://www.bloomberg.com/news/articles/2017-09-21/nuclear-scientists-head-to-china-to-test-experimental-reactors
20. https://www.linkedin.com/in/stephen-stapczynski-61187919/
21. https://thedebrief.org/chinese-fusion-reactor-sets-new-record-of-1056-seconds/
22. https://neutronbytes.com/2018/04/02/china-to-start-6-8-new-nuclear-reactors-in-2018/
23. https://www.iea.org/contributors/dr-fatih-birol
24. https://www.linkedin.com/in/fatih-birol/
25. https://www.linkedin.com/in/alex-cannara-6a1b7a3/
26. https://dailycaller.com/2016/08/02/mit-china-is-beating-america-in-nuclear-energy/
27. http://climatecolab.org/web/guest/plans/-/plans/contestId/4/planId/15102
28. http://en.m.wikipedia.org/wiki/Fuji_MSR
29. https://www.technologyreview.com/2016/08/02/158134/fail-safe-nuclear-power/
30. https://linkedin.com/in/richard-martin-80344410/
31. https://www.patreon.com/posts/39262802
32. https://www.nextbigfuture.com/2017/12/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones.html
33. https://www.linkedin.com/in/brian-wang-93645/
34. https://www.post-gazette.com/business/powersource/2022/05/10/westinghouse-for-sale-brookfield-energy-nuclear-sale-russia-ukraine-europe-evinci-microreactor-temelin-climate/stories/202205100052
35. https://www.linkedin.com/in/anya-litvak-a060096/
36. https://www.westinghousenuclear.com/new-plants/evinci-micro-reactor
37. https://www.youtube.com/watch?v=Us1WGZtzVCw

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day