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Advanced Power Conversion Systems

• Contrast Differences Between 

• Steam Rankine

– (Superheated, Supercritical, Saturated Vapor)

• Gas Brayton

– Helium Brayton

– S-CO2

• S-CO2 Development Status
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Power Conversion Systems 

For Advanced Reactors
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Steam Power Systems
(Saturated, Superheated, & Supercritical)
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Simple Brayton Cycle
Helium, Air, other Gases
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Supercritical CO2 Brayton Cycle
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All Brayton Cycles 
can use Reheat and Interstage Cooling 

Heat SinkHeat Sink
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Power Conversion and Nuclear Reactor 

Outlet Temperature Ranges

S-CO2 Power Conversion Operating Temperatures Matches all Advanced Reactor Concepts

LWR – compactness, condensing cycle appear promising

LWR- highly efficient with S-CO2 Condensing Power Cycles
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Supercritical CO2 Brayton Cycles

• What is a Supercritical CO2 Brayton Cycle?

• Why is it Important and How is it Used?

• DOE Gen-IV S-CO2 Program

• Major Accomplishments

• Power Generation Example

• Summary & Conclusions

• Problems and Failures

• Unusual Behavior

• Advanced Cycles



What is a Supercritical CO2 Brayton Cycle? 

How does it work?

Liquid like Densities with CO2

Very Small Systems,

High Efficiency due to Low Pumping Power
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High Density Means Very Small Power Conversion System

Non-Ideal Gas Means Higher Efficiency at Moderate Temperature
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Key Features to a Supercritical Brayton Cycle

• Peak Turbine Inlet Temp is well matched to a Variety of 

Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)

• Efficient ~43% - 50%  for 10 - 300 MWe Systems

– 1000 F (810 K) ~ 538 C         Efficiency = 43 % 

– 1292 F (1565 K) ~ 700 C        Efficiency =50%

• Standard Materials (Stainless Steels  and Inconels )

• High Power Density for Conversion System

– ~30 X smaller  than Steam or 6 X for Helium or Air

– Transportability (Unique or Enabling Capability)

– HX’s Use Advanced Printed Circuit Board Heat Exchanger 

(PCHE) Technology

• Modular Capability at ~10-20 MWe

– Factory Manufacturable (10 MW ~ 2.5m x 8m)

Advanced
Heat Exchangers 
Meggit / Heatric Co.

Modular & Self Contained
Power Conversion Systems
~ 1.5 m x 8 m

12’

Steam Turbine Turbine Building

Efficiency at Lower Operating Temps

Standard Materials, Small Size

Modular & Transportable

AFFORDABLE and FABRICABLE

S-CO2

Fabricated and Testing

1.5” Compressor

70 hp



Supercritical CO2 Cycle Applicable to 

Most Thermal Sources
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S-CO2 Power Cycles for Reactors

NGNP

High Temperature
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Inventory Control 

Volume

PCHE

Gas

Chiller

(0.5 MW)

TAC  - B
(not installed)

TAC  - A

Flow Meters

PCHE Recup

(up to 1.6 MW) 

260 kW Heater
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PCHE Recuperator

2.2 MW

Electrical Immersion Heaters

130 kW each, ASME 

810 K / 1000 F @ 2600 psia

PCHE Gas Precooler
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Turbo-Alternator-Compressor

Main Compressor, 124 kWe

Turbo-Alternator-Compressor

Re-Compressor, 122 kWe

Motor/Alternator Controller
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DOE-Gen IV



Key Technology

Turbo- Alternator Compressor Design with Gas Foil 

Bearings  
( 24” Long by 12” diameter) 

Tie Bolts (Pre-stressed)

Turbine

Compressor

Laby Seals

Journal Bearing
Thrust Bearing

Stator 

Water Cooling        PM Motor Generator

Low Pressure Rotor Cavity

Chamber (150 psia)

Gas-Foil Bearings
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S-CO2 Development Status 
(Brayton Loop)

• S-CO2 Brayton Loop Summary
– First Operations (July 2009)

– Split Flow with Dual Turbo-Compressors (Dec. 2010)

– Recuperator Installed in February 2010

– First Power Production (March 2010, 430 F) 

– Startup Up Issues Due to Low Temperature High Density 
Fluids

• Startup Procedures and Methods Developed and Successful

– Two Heaters added (total of 0.52 MW) (Oct-Dec 2010

– High Temperature Recuperated Added (Oct-Dec 2010)

– Commercialization Strategy for 10 MW Demo System 
Development Initiated

• Future Activities
– Increase Heater Power and Facility Cooling Capabilities

– Increase Turbine Inlet Temperature  (Design 1000 F)

– Ship to SNL Facility (Sep 2011)

– 10 MWe demonstration, Concept Design and Funding 
Path Developed

– Research on Mixed Fluids

– Research on Condensing Cycle

Inventory Control 
Volume

PCHE
Gas

Chiller

(0.5 MW)

TAC  - B
(not installed)

TAC  - A

Flow Meters

PCHE Recup
(up to 1.6 MW) 

260 kW Heater



Summary and Conclusions
• Steam Rankine Power Systems Can be Directly Applied to FHR Reactors 

– Commercially Available (Now)

– Efficiency up to ~ 45% at 500 C

– Corrosion Issues 

– Fluoride Salt Steam Compatibility Issues?

– Superheated are Larger than Supercritical  which are larger than S-CO2 power systems

• S-CO2 Brayton Cycles
– S-CO2 Appears Most Suited to Advanced Reactors

– Very Good Efficiency (400C -650 C) Temperature Range (43-48%  at 500C and 650 C)

– Peak Temperatures (750-800 C)

– Small due to low pressure ratio and high fluid density

– Advanced S-CO2 Systems have very high efficiency (up to 55%)

• Condensing, CO2-Gas Mixtures change Critical T, Interstage Heating with Condensing

– Remain Small

– Very Good Materials Compatibility

– Reactor Experience in AGRs and MagNox Rx in Great Britain

– Inexpensive fluid

– Single Phase

– Power Systems are Simple (due single phase nature)

– Less Sensitive to Pressure Drop

– Need Development and Not Proven on Commercial Industrial Scale

• Helium Brayton
– Commercial Testing in 1950s, Didn’t meet efficiency Goals

– Potential for High Efficiency at High T (> 900  C) , 48%

• But pressure drop, gas costs, leakage, generally reduce efficiency to 43%  

– IHC Lowers Improves efficiency at Lower Temp (650 C) eff~43% 

• But complexity and Size make Economics questionable


