

BRAYTON POWER SYSTEMS FOR FLUORIDE SALT HIGH TEMPERATURE REACTORS

Steven A. Wright¹, Ross F. Radel¹, Tom Conboy, and Gary Rochau¹ Sandia National Laboratories¹ 6771 Advanced Nuclear Technology 505 845 3014, <u>sawrigh@sandia.gov</u> Presentation to FHR Workshop ORNL, Oak Ridge , Tennessee October 20-21, 2010

Advanced Power Conversion Systems

- Contrast Differences Between
- Steam Rankine
 - (Superheated, Supercritical, Saturated Vapor)
- Gas Brayton
 - Helium Brayton
 - S-CO2
- S-CO2 Development Status

Power Conversion Systems For Advanced Reactors

Gas Brayton -		

Saturated Vapor	η = 34% at 285C 160 bar P _r = ~1600/1	High Pressure Ratio Means
Superheat	η = 41-43% at 510-525C 200 bar, P _r = 2000 /1	Large Turbines Many Stages Low Density Steam Large Condenser
Supercritical	η = 37.5% at 380C 250 bar P _r = ~1200	
	η = 45% at 500C 250 bar P _r = ~3000/1	
	Standard Brayton	Brayton with Reheat
He	η = 43% at 900 C 70 bar P _r =3/1	η = 42% at 650 C 70 bar Pr=30/1 IHC
Supercritical	CO ₂ η = 42% at 510-525 C 200 bar P _r = 2.6	η = 55% at 650 C
	η = 48% at 650 C 200 bar P _r = 2.6	250 bar P_r = 4.1 "Cond & Reheat" CIT=295 K

Barber 酸 Nichols

Power Conversion and Nuclear Reactor Outlet Temperature Ranges

S-CO₂ Power Conversion Operating Temperatures Matches all Advanced Reactor Concepts LWR – compactness, condensing cycle appear promising LWR- highly efficient with S-CO2 Condensing Power Cycles

Supercritical CO2 Brayton Cycles

- What is a Supercritical CO₂ Brayton Cycle?
 - Why is it Important and How is it Used?
 - DOE Gen-IV S-CO₂ Program
 - Major Accomplishments
 - Power Generation Example
 - Summary & Conclusions
 - Problems and Failures
 - Unusual Behavior
 - Advanced Cycles

Barber 酸 Nichols

Key Features to a Supercritical Brayton Cycle

- Peak Turbine Inlet Temp is well matched to a Variety of Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)
- Efficient ~43% 50% for 10 300 MW_e Systems
 - 1000 F (810 K) ~ 538 C Efficiency = 43 %
 - 1292 F (1565 K) ~ 700 C Efficiency =50%
- Standard Materials (Stainless Steels and Inconels)
- High Power Density for Conversion System
 - ~30 X smaller than Steam or 6 X for Helium or Air
 - Transportability (Unique or Enabling Capability)
 - HX's Use Advanced Printed Circuit Board Heat Exchanger (PCHE) Technology
- Modular Capability at ~10-20 MWe
 - Factory Manufacturable (10 MW ~ 2.5m x 8m)

Efficiency at Lower Operating Temps Standard Materials, Small Size Modular & Transportable AFFORDABLE and FABRICABLE

S-CO₂

Steam Turbine

Advanced Heat Exchangers Meggit / Heatric Co.

Fabricated and Testing

1.5" Compressor

Turbine Building

70 hp

Power Conversion Systems ~ 1.5 m x 8 m

Modular & Self Contained

Barber 酸 Nichols

Supercritical S-CO₂ Brayton Cycle

Gen IV Split-Flow Re-compression S-CO₂ Brayton Cycle Design Goal

• S-CO₂ Brayton Loop Summary

- First Operations (July 2009)
- Split Flow with Dual Turbo-Compressors (Dec. 2010)
- Recuperator Installed in February 2010
- First Power Production (March 2010, 430 F)
- Startup Up Issues Due to Low Temperature High Density Fluids
 - Startup Procedures and Methods Developed and Successful
- Two Heaters added (total of 0.52 MW) (Oct-Dec 2010
- High Temperature Recuperated Added (Oct-Dec 2010)
- Commercialization Strategy for 10 MW Demo System Development Initiated

Future Activities

- Increase Heater Power and Facility Cooling Capabilities
- Increase Turbine Inlet Temperature (Design 1000 F)
- Ship to SNL Facility (Sep 2011)
- 10 MWe demonstration, Concept Design and Funding Path Developed
- Research on Mixed Fluids
- Research on Condensing Cycle

Summary and Conclusions

Steam Rankine Power Systems Can be Directly Applied to FHR Reactors

- Commercially Available (Now)
- Efficiency up to ~ 45% at 500 C
- Corrosion Issues
- Fluoride Salt Steam Compatibility Issues?
- Superheated are Larger than Supercritical which are larger than S-CO2 power systems

S-CO2 Brayton Cycles

- S-CO2 Appears Most Suited to Advanced Reactors
- Very Good Efficiency (400C -650 C) Temperature Range (43-48% at 500C and 650 C)
- Peak Temperatures (750-800 C)
- Small due to low pressure ratio and high fluid density
- Advanced S-CO2 Systems have very high efficiency (up to 55%)
- Condensing, CO2-Gas Mixtures change Critical T, Interstage Heating with Condensing
- Remain Small
- Very Good Materials Compatibility
- Reactor Experience in AGRs and MagNox Rx in Great Britain
- Inexpensive fluid
- Single Phase
- Power Systems are Simple (due single phase nature)
- Less Sensitive to Pressure Drop
- Need Development and Not Proven on Commercial Industrial Scale
- Helium Brayton
 - Commercial Testing in 1950s, Didn't meet efficiency Goals
 - Potential for High Efficiency at High T (> 900 C), 48%
 - But pressure drop, gas costs, leakage, generally reduce efficiency to 43%
 - IHC Lowers Improves efficiency at Lower Temp (650 C) eff~43%

But complexity and Size make Economics questionable

