Episode 19 – Want a Lift? Grab a LFTR – Unintended Consequences – Chapter 8 Part 3

Dr Alvin Weinberg at ORNL Stylised

What’s a LFTR?

A thoriumfuelled MSR [Molten Salt Reactor] is a Liquid Fluoride Thorium Reactor – a LFTR

Pronounced ‘LIFTER
A Lifetime of power in the palm of your hand [with Thorium]

With a half-life of 14 billion years, Thorium-232 is one of the safest, least radioactive elements in the world. Thorium-232 emits harmless alpha particles that cannot even penetrate skin, but when it becomes Th-233 in a Molten Salt Reactor, it becomes a potent source of power. Sunlight, living at high altitude and the emissions from your granite counter-top or a coal-burning plant are more hazardous than thorium-232.

LFTRs are even more fuel-efficient than uranium- fuelled MSRs, and they create little waste because a LFTR consumes close to 99% of the thorium-232. LWRs reactors consume just 3% of their uranium before the rods need to be changed. That’s like burning just a tiny part of a log while polluting the rest with chemicals you must store for years.

Just one pound of thorium can generate as much electricity as 1700 tons coal, so replacing coal-burning plants with LFTRs would eliminate one of the largest causes of climate change. That same pound (just a golf ball-size lump), can yield all the energy an individual will ever need, and just one cubic yard of thorium can power a small city for at least a year. In fact, if we were to replace ALL of our carbon-fuelled, electrical power production with LFTRs, we would eliminate 30 to 35% of all man-made greenhouse gas production.

From 1977 to 1982, the Light Water Reactor at Shippingport, Pennsylvania was powered with thorium, and when it was eventually shuttered, the reactor core was found to contain about 1% more fissile material (U233/235) than when it was loaded. (Thorium has also fuelled the Indian Point 1 facility and a German reactor.)

India, which has an abundance of thorium, is planning to build Thorium-powered reactors, as is China while we struggle to overcome our unwarranted fear of nuclear power. And in April, 2015, a European commission announced a project with 11 partners from science and industry to prove the innovative safety concepts of the Thorium-fuelled MSR and deliver a breakthrough in waste management.

Please read Thorium: the last great opportunity of the industrial age by David Archibald

Thorium: the last great opportunity of the industrial age, by David Archibald

To Slow Global Warming, We Need Nuclear Power by By Lamar Alexander and Sheldon Whitehouse

China Ramps Up New Nuclear Reactor Construction

China is Determined
China Nuclear Build Map – World Nuclear Association

Supplies

Thorium is four times as plentiful as uranium ore, which contains only 1% U-235. Besides being almost entirely usable, it is 400 times more abundant than uranium’s fissile U-235. Even at current use rates, uranium fuels can last for centuries, but thorium could power our world for thousands of years.

Just 1 ton of thorium is equivalent to 460 billion cubic meters of natural gas. We already have about 400,000 tons of thorium ore in “storage”, and we don’t need to mine thorium because our Rare-Earth Elements plant receives enough thorium to power the U. S. every year. Australia and India tie for the largest at about 500,000 tons, and China is well supplied.

A 1 GW LWR requires about 1.2 tons of uranium each year, but a 1 GW LFTR only needs a one-time “kick start” of 500 pounds of U-235 plus 1 ton of thorium each year.

Waste and Storage

Due to their high efficiency, LFTRs create only 1% of the waste that conventional reactors produce, and because only a small part of that waste needs storing for 400 years – not the thousands of years that LWR waste requires – repositories much smaller than Yucca mountain would easily suffice.

Furthermore, LFTRs can run almost forever because they produce enough neutrons to make their own fuel, and the toxicity from LFTR waste is 1/1000 that of LWR waste. So, the best way to eliminate most nuclear waste is to stop creating it with LWRs and replace them with reactors like MSRs or LFTRs that can utilize stored “waste” as fuel.

With no need for huge containment buildings, MSRs can be smaller in size and power than current reactors, so ships, factories, and cities could have their own power source, thus creating a more reliable, efficient power grid by cutting long transmission line losses that can run from 8 to 15%. Unfortunately, few elected officials will challenge the carbon industries that provide millions of jobs and wield great political power. As a consequence, thorium projects have received little to no help from our government, even though China and Canada are moving toward thorium, and India already has a reactor that runs on 20% thorium oxide.

GE Hitachi, ARC to license joint reactor in Canada; Siemens installs first live 3D-printed part

3D Printed Nuclear Reactor Core Microreactor ORNL, 25 May 2020

India on the road map of tripling nuclear power capacity

After our DOE signed an agreement with China, we gave them our MSR data. To supply its needs while MSRs are being built, China is relying on 27 conventional nuclear reactors plus 29 Generation III+ (solid fuel) nuclear plants that are under construction. China also intends to build an additional fifty-seven nuclear power plants, which is estimated to add at least 150 GigaWatts (GW) by 2030.

Nuclear Scientists Head to China to Test Experimental Reactors, by Stephen Stapczynski

China to start building 6-8 new nuclear reactors in 2018

“Global increase in nuclear power capacity in 2015 hit 10.2 gigawatts, the highest growth in 25 years driven by construction of new nuclear plants mainly in China…. We have never seen such an increase in nuclear capacity addition, mainly driven by China, South Korea and Russia,.. It shows that with the right policies, nuclear capacity can increase.”

Dr Fatih Birol, Executive Director, International Energy Agency, Paris Conference, Reuters, 28 June 2016
Russia Building the Akkuyu Nuclear Power Plant in Turkey

“When the China National Nuclear Power Manufacturing Corporation sought investors in 2015, they expected to raise a modest number of millions but they raised more than $280 billion.”

Dr. Alex Cannara

MIT: China Is Beating America In Nuclear Energy

In 2016, the Chinese Academy of Sciences allocated $1 billion to begin building LFTRs by 2020. As for Japan, which began to restart its reactors in 2015, a FUJI design for a 100 to 200 MW LFTR is being developed by a consortium from Japan, the U. S. and Russia at an estimated energy cost of just three cents/kWh. Furthermore, it appears that five years for construction and about $3 billion per reactor will be routine in China.

Fail-Safe Nuclear Power, By Richard Martin

China spending US$3.3 billion on molten salt nuclear reactors for faster aircraft carriers and in flying drones, December 6, 2017 by Brian Wang

Westinghouse’s eVinci would look a lot like a LFTR in operation. See more next week on how a LFTR works.

Westinghouse Electric’s parent company wants to put the nuclear company on the market by Anya Litvak

Westinghouse HQ
eVinci by Westinghouse

Coming up next week, Episode 20 – Got a LFTR? Lets Look Under the Hood


Links and References

1. Next Episode – Episode 20 – Got a LFTR? Lets Look Under the Hood
2. Previous Episode – Episode 18 – Pass the Salt Dear – How Fission Gets Rock Solid Stability
3. Launching the Unintended Consequences Series
4. Dr. George Erickson on LinkedIn
5. Dr. George Erickson’s Website, Tundracub.com
6. The full pdf version of Unintended Consequences
7. https://en.wikipedia.org/wiki/Shippingport_Atomic_Power_Station
8. https://wattsupwiththat.com/2015/05/16/thorium-the-last-great-opportunity-of-the-industrial-age/
9. https://www.amazon.com/David-Archibald/e/B00I32BANS/
10. https://www.nytimes.com/2016/12/21/opinion/to-slow-global-warming-we-need-nuclear-power.html?
11. https://www.linkedin.com/in/lamar-alexander-68290688/
12. https://www.linkedin.com/in/alexander-whitehouse/
13. https://neutronbytes.com/2020/07/11/china-ramps-up-new-nuclear-reactor-construction/
14. https://world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx
15. https://www.reutersevents.com/nuclear/ge-hitachi-arc-license-joint-reactor-canada-siemens-installs-first-live-3d-printed-part?
16. https://www.ornl.gov/news/3d-printed-nuclear-reactor-promises-faster-more-economical-path-nuclear-energy
17. https://www.thehindubusinessline.com/economy/india-on-the-roadmap-of-tripling-nuclear-power-capacity/article64295841.ece
18. https://www.thestatesman.com/india/indian-nuclear-reactor-at-kaiga-sets-world-record-for-continuous-operation-1502700962.html
19. https://www.bloomberg.com/news/articles/2017-09-21/nuclear-scientists-head-to-china-to-test-experimental-reactors
20. https://www.linkedin.com/in/stephen-stapczynski-61187919/
21. https://thedebrief.org/chinese-fusion-reactor-sets-new-record-of-1056-seconds/
22. https://neutronbytes.com/2018/04/02/china-to-start-6-8-new-nuclear-reactors-in-2018/
23. https://www.iea.org/contributors/dr-fatih-birol
24. https://www.linkedin.com/in/fatih-birol/
25. https://www.linkedin.com/in/alex-cannara-6a1b7a3/
26. https://dailycaller.com/2016/08/02/mit-china-is-beating-america-in-nuclear-energy/
27. http://climatecolab.org/web/guest/plans/-/plans/contestId/4/planId/15102
28. http://en.m.wikipedia.org/wiki/Fuji_MSR
29. https://www.technologyreview.com/2016/08/02/158134/fail-safe-nuclear-power/
30. https://linkedin.com/in/richard-martin-80344410/
31. https://www.patreon.com/posts/39262802
32. https://www.nextbigfuture.com/2017/12/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones.html
33. https://www.linkedin.com/in/brian-wang-93645/
34. https://www.post-gazette.com/business/powersource/2022/05/10/westinghouse-for-sale-brookfield-energy-nuclear-sale-russia-ukraine-europe-evinci-microreactor-temelin-climate/stories/202205100052
35. https://www.linkedin.com/in/anya-litvak-a060096/
36. https://www.westinghousenuclear.com/new-plants/evinci-micro-reactor
37. https://www.youtube.com/watch?v=Us1WGZtzVCw

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day

Episode 17 – All At Sea – The Best Technology and Not Used. Why? Unintended Consequences – Chapter 8 Part 1

Diablo Canyon

Powering Ships and Desalination

Cargo ships emit more air pollution than all of the world’s cars, but we don’t power them with emission-free nuclear power because we are worried about nuclear proliferation. However, if we would equip these ships with new, proliferationresistant reactors, we could save seven million barrels of oil per day, eliminate 4% of our greenhouse gas emissions and replace those huge fuel tanks with profitable cargo.

Hyundai Merchant Marine, Algecira Class, at River Elbe, World Largest Carrier. 400 m long x 61 m wide

Propelling one of our [USA] immense aircraft carriers at 27 mph for 24 hours requires only three pounds [1.36 kg] of nuclear fuel, which is equivalent to 400,000 gallons [1.8 million litres] of diesel fuel. (Burning 100 gallons [455 litres] of diesel fuel creates one ton of carbon dioxide.)

Thor’ – a Thorium Molten Salt Reactor ship design by Ulstein for Replenishment, Research and Rescue

California’s drought-stricken Central Valley, which was a dry savanna before “civilisation” arrived, is more than 10 trillion gallons [46 billion metres3] per year behind in precipitation. Fortunately, there is a remedy, but that remedy will require an abundance of carbon-free electricity created by safe, efficient nuclear power plants.

The non-nuclear Carlsbad desalination plant produces some 50 million gallons [230 million litres] of fresh water per day with 40 MW, which only supplies 7% of San Diego’s needs, but supplying all of the state would require 140 Carlsbads, which is why the Diablo Canyon nuclear power plant has begun to produce fresh water.


There should be many more plants like Diablo, and there would be, but for the opposition of anti-nuclear zealots whose efforts helped accomplish the closure of California’s San Onofre nuclear power plant. As a result, San Onofre’s 2.4 billion watts of carbon-free electricity are being generated by plants that burn huge volumes of natural gas (methane), which raises CO2 levels and worsens Climate Change.

Tree ring study shows California’s drought worst in 1,200 years

Kevin Anchukaitis collecting a tree ring sample from a blue oak in California. Image Credit: Dan Griffin

Why do we persist with carbon fuels when six uranium oxide pellets the size of the tip of your little finger, contain as much energy as 3 tons of coal or 60,000 cubic feet of natural gas? Just a fistful of uranium can run all of New York City for an hour, and the spent fuel “waste” products are far less than that.

The 2.2-megawatt Excel Energy plant at Becker, MN – the state’s largest emitter of greenhouse gases – turns 60 million pounds of coal per day into CO2, but less than 100 pounds of uranium would produce the same amount of electricity without creating any CO2.

How does a water-cooled, uranium-fuelled Light Water Reactor (LWR) work?

What are its pluses and minuses?

Some claim that uranium mining is especially dangerous because the ore is radioactive, but they are wrong. The radiation level just one foot from a drum of uranium [yellow cake] is only 20% of the cosmic radiation level that passengers experience on a jet flight – and the ore from which the oxide was derived is even less hazardous.

In a LWR, uranium pellets containing about 4-5% U-235 are sealed in about 25,000 12-foot zirconium tubes. Within those tubes, the U-235 emits neutrons that sustain a chain reaction that releases huge amounts of heat that raises the water temperature to 600 degrees F [320 C], so it must be “kept” at 2,700 psi [20 MPa] to prevent it from boiling. The super-heated water is circulated through a heat-exchanger to make steam in a separate plumbing loop. That steam powers a turbine, which spins a generator. And because the super-heated water would explosively expand 1,000 times if there were a leak, a huge, immensely strong containment dome encloses the reactor so that steam or other gases can’t escape. Once started, a LWR can run for three years with only periodic breaks for refuelling.

Typical Uranium Fuelled Power Plant

What about the “waste”?

Nuclear Fuel Recycling Could Offer Plentiful Energy

Nuclear power plants are required to contain 100% of their spent fuel (“waste”), but if you were to get all the electricity for your lifetime from conventional reactors, your share would weigh just two pounds [one kilogram], and only a small part of that would be hazardous long term.

During fission, reaction products accumulate in the pellets, which become cracked, and must be replaced during a multi-day shut-down during which the rods are moved to pools filled with water, which absorbs neutrons, to keep the decaying fuel from overheating.

After underwater storage for up to 8 years, radioactivity has decreased to the point that the rods can be stored in self-ventilating, concrete cylinders. And after 10 more years, 90% of the highly radioactive elements are no longer hazardous.

Spent Fuel Storage Pond at a Nuclear Power Station

On-site storage is a sensible solution because 96% of this spent fuel can fuel modern, “fast” and other reactors to make more electricity. In 2018, the US generated 4.2 billion megawatt hours of electricity from all sources, but we have enough spent fuel to generate 4 billion megawatt years of CO2-free electricity! Why are we waiting?

“Human societies are addicted to their way of life, and they are fanatical in their defence. Hence, they are reluctant to reform. To admit error is rare among individuals and unknown among states. Instead of changing their minds, leaders redouble their efforts to do what no longer works, wooden-headedly persisting in error until the bitter end.” [Wind and solar – not nuclear]

William Ophuls

These pellets also contain isotopes needed for nuclear medicine. (Plutonium 239, which the anti-nukes fuss about, has a half-life of 24,000 years. When held in a gloved hand, one only feels slight warmth due to its extremely slow decay, and as spent fuel decays, it becomes safer – unlike the toxic ash and the particulates made by burning carbon, which remain toxic forever.

Spent Fuel Ain’t Really “Spent”

However, Caesium, Iodine and Strontium isotopes are dangerous because they mimic food elements that our bodies need. Iodine decays rapidly, but Strontium and Caesium decay by half in about 30 years, so we should store them safely for 120 years, at which time their activity has dropped by 94%.

Note the absence of shielding, even though Mr. Agnew [b. 1921, d. 2013, age 92] is carrying the plutonium that destroyed Nagasaki at the end of World War II.

Good video on spent fuel from Columbia plant, featuring Dr. James Conca.

Nuclear Waste | Dr. James Conca

Dry Storage of Spent [Used] Fuel Casks. No worker protection is needed

  • Used Fuel Dry Storage 1 Prairie Island Nuclear Plant Minnesota
  • Used Fuel Dry Storage 2 Prairie Island Nuclear Plant in Minnesota
  • Used Fuel Dry Storage Canada
  • Used Fuel Dry Storage James A. Fitzpatrick Nuclear Power Plant Scriba New York
  • Used Fuel Dry Storage
  • Used Fuel Dry Storage Central Missouri

Heavily nuclear France has a recycling program that greatly reduces its volume and the length of time it must be stored. As a consequence, all of France’s multi-decade spent fuel could be stored on one basketball court.

In comparison, all of the “waste” generated in the U.S. since the fifties could be stored on one football field in self-ventilating, concrete containers. After just 40 years of storage, only about one thousandth as much radioactivity remains as when the reactor was turned off for fuel replacement. (Only a small portion needs long term storage or recycling.)

Australian Nuclear ResponsibilitiesBen Heard

However, because recycling can retrieve plutonium isotopes from the waste, some of which can be used for making weapons, President Carter closed our [USA] only recycling plant during the Cold War in an attempt to placate Russian fears that we’d use the plutonium for making nuclear bombs.

Scientists turn nuclear waste into diamond batteries (that will last 1,000’s of years) by Philip Perry

WHO’S AFRAID OF NUCLEAR WASTE?

Unfortunately, there was, and is, another reason: The anti-nuclear crowd has promoted radiophobia so effectively that many voters and legislators refuse to even consider building the new, super-safe, highly efficient reactors that can use 95% of our stored “waste”, including the plutonium, as fuel. (During the last 70 years, just 56,000 tons of nuclear “waste” was generated in the U S, but the city of New York creates that much in just 6 days.

Trash Recycling Management in New York – Low Cost Fission Would Recycle All of It

General Electric and Southern Company Team Up to Power the Planet With Nuclear Waste

[Types of Radioactive Waste by Cameco

Radioactive waste is generally divided into three categories depending on its level of radioactivity: low, intermediate and high-level waste.

  • Low-level waste includes slightly contaminated clothing and items that comes from places such as nuclear medicine wards in hospitals, research laboratories and nuclear plants. Low-level waste contains only small amounts of radioactivity that decays away in hours or days. After the radioactivity has decayed, low-level waste can be treated like ordinary garbage.
  • Intermediate-level wastes mostly come from the nuclear industry. They include used reactor components and contaminated materials from reactor decommissioning. Typically these wastes are embedded in concrete for disposal and buried.
  • High-level waste generally describes spent (or used) fuel from nuclear reactors. It is highly radioactive, will remain so for many years, and requires special handling.

According to the IAEA, low and intermediate level wastes comprise about 97% of the volume, but only 8% of the radioactivity of all radioactive waste. ]


Coming up next week, Episode 18 – Pass the Salt Dear – How Fission Gets Rock Solid Stability


Links and References

1. Next Episode – Episode 18 – Pass the Salt Dear – How Fission Gets Rock Solid Stability
2. Previous Episode – Episode 16 – Green is Clean Air and Clean Water for All
3. Launching the Unintended Consequences Series
4. Dr. George Erickson on LinkedIn
5. Dr. George Erickson’s Website, Tundracub.com
6. The full pdf version of Unintended Consequences
7. https://dailylogistic.com/world-largest-container-ships/
8. https://splash247.com/ulstein-debuts-thor-claiming-it-is-shippings-nuclear-powered-silver-bullet/
9. https://www.youtube.com/watch?v=IBRVb0-0kAw
10. https://en.wikipedia.org/wiki/Diablo_Canyon_Power_Plant
11. https://en.wikipedia.org/wiki/Claude_%22Bud%22_Lewis_Carlsbad_Desalination_Plant
12. https://en.wikipedia.org/wiki/San_Onofre_Nuclear_Generating_Station
13. https://earthsky.org/earth/tree-ring-study-shows-californias-drought-worst-in-1200-years/
14. http://climatewarmingcentral.com/nuclear_page.html
15. https://www.anl.gov/article/nuclear-fuel-recycling-could-offer-plentiful-energy
16. https://nuclearenergyinfo.blogspot.com/2010/10/what-is-spent-fuel.html
17. https://en.wikipedia.org/wiki/Harold_Agnew
18. https://www.youtube.com/watch?v=0JfJEK3R1k0
19. https://www.linkedin.com/in/jim-conca-2a51037/
20. https://www.kiteandkeymedia.com/videos/is-nuclear-energy-and-waste-safe-or-dangerous-and-how-to-manage-storage-disposal-radiation/
21. https://www.cameco.com/uranium_101/spent-fuel-management/spent-fuel/
22. https://www.youtube.com/watch?v=IzbI0UPwQHg
23. https://www.linkedin.com/in/ben-heard-743b6014/
24. https://bigthink.com/surprising-science/scientists-turn-nuclear-waste-in-diamond-batteries-thatll-last-for-thousands-of-years/
25. https://bigthink.com/people/philip-perry/
26. https://www.foxbusiness.com/markets/general-electric-and-southern-company-team-up-to-power-the-planet-with-nuclear-waste
27. https://www.cameco.com/uranium_101/spent-fuel-management/spent-fuel/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #DiabloCanyon #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day