Episode 26 – Tilting at Windmills – Unintended Consequences – Chapter 9 Part 3

Buffett and Musk on Renewables, Centralised vs Decentralised

Number 2 – Tilted Economics

I understand why power companies cooperated with the rush to wind power. For one thing, renewables were demanded by a misinformed public led by many of the “green” organisations whose goals I support, but not their methods.

33% efficient windmills have received subsidies of USD 56 per Megawatt hour. In comparison, 90% efficient nuclear power, which critics say is “too expensive,” receives just USD 3 per Megawatt hour.

Big Wind’s Bogus Subsidies by Nancy Pfotenhauer, May 12, 2014

Even the wind companies and Warren Buffett admit that without the subsidies, they’d be losers: “…on wind energy, we get a tax credit if we build a lot of wind farms. That’s the only reason to build them. They don’t make sense without the tax credit.” (2014)

“…on wind energy, we get a tax credit if we build a lot of wind farms. That’s the only reason to build them. They don’t make sense without the tax credit.”

Warren Buffett, 2014

“Most cost estimates for wind power disregard the heavy burden of these subsidies on US taxpayers. But if Americans realised the full cost of generating energy from wind power, they would be less willing to foot the bill – because it’s more than most people think.

Renewable-Energy Subsidies and Electricity Generation by Veronique de Rugy, 21 May 2013

“Over the past 35 years, wind energy – which supplied just 4.4% of US electricity in 2014 – has received USD 30 billion in federal subsidies and various grants. These subsidies shield people from the truth of just how much wind power actually costs and transfer money from average taxpayers to wealthy wind farm owners, many of which are units of foreign companies….”

Levelized Cost Of Energy, Levelized Cost Of Storage, and Levelized Cost Of Hydrogen, 28 October 2021

The solar/nuclear subsidy ratio has been 250 to 1!” – Dr. George Erickson

SYDNEY MORNING HERALD’S CHAOTIC COAL SOLUTION, by Rob Parker, 15 January 2018

Frozen wind turbines, limited gas supplies and rolling blackouts: Behind Texas’ energy woes By Ralph Ellis, Alisha Ebrahimji, Kelsie Smith and Amanda Jackson, 16 February 2021

Testimony of Dr. James Hansen, formerly of NASA, to the Senate Foreign Relations Committee, March, 2014:

“Nuclear’s production tax credit (PTC) of 1.8 cents/kWhr is not indexed for inflation. PTCs for other low carbon energies are indexed. The PTC for wind is 2.3 cents/kWhr.

“Plants must be placed in service before January 1, 2021. Thanks to Nuclear Regulatory Comm. slowness, that practically eliminates any PTC for new nuclear power.

“Do you know about “renewable portfolio standards”? If government cares about young people and nature, why are these not “carbon-free portfolio standards”?

“This is a huge hidden subsidy, reaped by only renewables. There is a complex array of financial incentives for renewables. Incentives include the possibility of a 30% investment tax credit in lieu of the PTC, which provides a large “time-value-of-money” advantage over a PTC spread over 8-10 years, accelerated 5-year depreciation, state and local tax incentives, loan guarantees with federal appropriation for the “credit subsidy cost.

“Nuclear power, in contrast, must pay the full cost of a Nuclear Regulatory Commission license review, at a current rate of USD 272 per professional staff hour, with no limit on the number of review hours. The cost is at least USD 100-200 million. The NRC takes a minimum of 42 months for its review, and the uncertainty in the length of that review period is a major disincentive.”

Nuclear power paves the only viable path forward on climate change, James Hansen, Kerry EmanuelKen Caldeira and Tom Wigley, Guardian 3 December 2015

Kerry Emanuel: A climate scientist and meteorologist in the eye of the storm, MIT News, 29 June 2022

“When supply is high and demand is low, spot prices generally fall — this is especially true in markets with high shares of renewable energy. What precipitates negative pricing are conditions which encourage energy producers to sell at an apparent loss, knowing that in the longer term [thanks largely to huge taxpayer subsidies] they will still profit.

“The Texas grid is managed by the energy agency of the same name… The market functions through auctions, where energy producers place a competitively priced bid to supply some amount of energy at a particular time and particular price…

“Various subsidies, including our U. S. federal production tax credits and state renewable energy certificates, compensate wind power producers… to such an extent that it allows wind farms to continue to make money even when selling at negative prices.”

From Clean Technica – October, 2015

We are all paying hidden costs to prop up these inefficient, deadly “alternatives” that depend on methane [Natural Gas] to produce 70% of their rated power, even though the methane [Natural Gas] leakage from fracking and the distribution system are erasing any benefits we hoped to get by avoiding coal. Furthermore, the price quoted for a nuclear plant includes the cost of decommissioning, but it isn’t for the thousands of windmills or solar farms that only last about 20 years.

Fracking boom tied to methane spike in Earth’s atmosphere, by Stephen Leahy, National Geographic, 15 August 2019

Fracking wells in the US are leaking loads of planet-warming methane, by Adam Vaughan, New Scientist, 22 April 2020

Methane Leaks Erase Some of the Climate Benefits of Natural Gas, by Benjamin Storrow, Scientific America, 5 may 2020

In fact, the deck has been stacked against nuclear power by “green” profiteers and carbon lobbyists who know they cannot compete with 90% efficient, CO2-free nuclear power. Still, despite the bureaucratic handicaps on nuclear power and the support given to renewables, nuclear power is financially competitive, as the following chart reveals.

US Electricity Generating Costs

Coming up next week, Episode 27 – Fake and Vulgar


Links and References

  1. Next Episode – Episode 27 – Fake and Vulgar
  2. Previous Episode – Episode 25 – Hazards to Humans
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://www.usnews.com/opinion/blogs/nancy-pfotenhauer/2014/05/12/even-warren-buffet-admits-wind-energy-is-a-bad-investment
  8. https://www.linkedin.com/in/nancy-pfotenhauer-45171925/
  9. https://www.bloomberg.com/news/articles/2022-06-10/it-s-warren-buffett-versus-big-tech-in-iowa-s-latest-wind-farm-debate
  10. https://www.proactiveinvestors.co.uk/companies/news/986642/warren-buffett-speeds-past-elon-musk-in-electric-vehicle-race-986642.html
  11. https://www.mercatus.org/publications/government-spending/renewable-energy-subsidies-and-electricity-generation
  12. https://www.linkedin.com/in/veronique-de-rugy-50204876/
  13. https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/
  14. https://lifepowered.org/
  15. http://nuclearforclimate.com.au/2018/01/15/sydney-morning-heralds-chaotic-coal-solution/
  16. https://www.linkedin.com/in/robert-parker-7b7b01b1/
  17. https://edition.cnn.com/2021/02/15/us/power-outages-texas-monday/index.html
  18. https://www.linkedin.com/in/ralph-ellis-2b99646/
  19. https://www.linkedin.com/in/aebrahimji/
  20. https://www.linkedin.com/in/kelsiesmith16/
  21. https://www.linkedin.com/in/amandajackson9/
  22. https://gizmodo.com/viral-image-claiming-to-show-a-helicopter-de-icing-texa-1846279287
  23. https://en.wikipedia.org/wiki/James_Hansen
  24. https://www.newyorker.com/news/daily-comment/how-not-to-debate-nuclear-energy-and-climate-change
  25. Michael Specter
  26. https://www.linkedin.com/in/michaelspecter/
  27. https://www.theguardian.com/environment/2015/dec/03/nuclear-power-paves-the-only-viable-path-forward-on-climate-change
  28. https://en.wikipedia.org/wiki/Kerry_Emanuel
  29. https://eapsweb.mit.edu/people/kokey
  30. https://www.linkedin.com/in/ken-caldeira-2a45648/
  31. https://www.linkedin.com/in/tom-wigley-642a11ba/
  32. https://news.mit.edu/2022/kerry-emanuel-climate-scientist-0629
  33. https://windexchange.energy.gov/projects/tax-credits
  34. https://www.nationalgeographic.com/environment/article/fracking-boom-tied-to-methane-spike-in-earths-atmosphere
  35. https://www.linkedin.com/in/stephenleahy/
  36. https://www.newscientist.com/article/2241347-fracking-wells-in-the-us-are-leaking-loads-of-planet-warming-methane/
  37. https://www.linkedin.com/in/adamvaughan/
  38. https://www.nytimes.com/2019/12/16/climate/methane-leak-satellite.html
  39. https://www.scientificamerican.com/article/methane-leaks-erase-some-of-the-climate-benefits-of-natural-gas/
  40. https://www.linkedin.com/in/ben-storrow-b341a3a1/

#UnintendedConsequences #GeorgeErickson #FissionEnergy #NuclearEnergy #TheThoriumNetwork #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #NuclearEconomics #CostofElectricity #ElonMusk #WarrenBuffett

Episode 25 – Hazards to Humans – The Blades of Death – Unintended Consequences – Chapter 9 Part 2

Burning Dutch Windturbine - Large Format

It’s not just birds and bats that suffer. According to the Caithness Windfarm Information Forum, “Just in England, there were 163 wind turbine accidents that killed 14 people in 2011, which translates to about 1000 deaths per billion kilowatt-hours.

“Solar and Wind emit more radiation (from mining the rare earth metals), than the nuclear fuel cycle does.”

UNSCEAR 2016 REPORT SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION

“In contrast, during 2011 nuclear energy produced 90 billion kWhrs in England with NO deaths and America produced 800 billion kWhrs via nuclear with NO deaths.”

Why is it almost sacrilegious for the Sierra Club and its clones to rethink windmills, and why do they refuse to watch presentations that compare the records of their “green” alternative energy sources to the record of CO2-free nuclear power? Could $$$ be involved? (In 2012, TIME magazine reported that the Sierra Club secretly accepted USD 26 million from Chesapeake Energy – an oil company.)

Answering for Taking a Driller’s Cash, New York Times, 14 February 2012

Exclusive: How the Sierra Club Took Millions From the Natural Gas Industry—By Bryan Walsh 2 February 2012

Researchers at the University of Edinburgh report that 117 of world’s 200,000 windmills burn every year – far more than the 12 reported by wind farm companies. Even more throw their blades or have them torn off by climate change storms.

Fires are major cause of wind farm failure, according to new research by Colin Smith 17 July 2014

Why hasn’t our media featured this image of two Dutch engineers waiting to die? (It’s been available for years.) One jumped to his death. The other burned to death.

“The accident with Daan and Arjan was already five years ago. It is sad that still no or insufficient measures have been taken to guarantee safety.”

Mother of Arjan, 2018

Wind turbine fire risk: Number that catch alight each year is ten times higher than the industry admits

Why hasn’t our media published easily available images of burning windmills, windmills that have toppled over and windmills that have thrown their blades more than a third of a mile?

Dual deaths in wind turbine fire highlight hazards East County Magazine|Miriam Raftery|October 31, 2013

5 Wind Turbines Which Failed (Environmentally Friendly?)


Bats and Turbines


TOO MUCH WIND! 10 Wind Turbine Fails

U. S. Insurance claims for 2018 reveal that blade damage and gearbox failures cost the industry USD 340,000 and USD 480,000 respectively. Claims associated with windmill foundations have averaged USD 1,800,000 per year, reaching USD 3,200,000 in 2018 due to extreme circumstances.

For examples of the opposition we encounter from many “greens” please see these excellent articles:

Saving the Environment from Environmentalism, by By Paul Lorenzini

Response to Robert Llewellyn – Fully Charged

Six New Papers Reveal A Hushed-Up ‘Green’ Reality: Wind Turbines Destroy Habitats

As mentioned near the end of Chapter seven – and repeated here for emphasis – when we include the positive medical data that was accumulated over thirty years from Pripyat and the region around Chernobyl, the worldwide death print for wind is 115 times worse than the death print or nuclear power, 340 times worse for solar, 3,000 times worse for natural gas and 27,000 times worse for oil.

Nuclear power is even safer than ‘benign” hydropower, which has a huge carbon footprint because of the energy needed to manufacture the cement in its concrete, and because reservoirs create large amounts of methane. (See Hydro’s Dirty Secret Revealed by Duncan Graham-Rowe.)

Hydroelectric power’s dirty secret revealed by Duncan Graham-Rowe

Furthermore, people who are forced to live close to windmills have complained of severe sleep deprivation, chronic stress, dizziness and vertigo caused by low frequency noise and inaudible noise below 20 Hz, known as infrasound.

Health effects of wind turbine noise and road traffic noise on people living near wind turbines

Effects of low-frequency noise from wind turbines on heart rate variability in healthy individuals

Adverse health effects of industrial wind turbines

French couple who said windfarm affected health win legal fight

Despite these problems, those who profit from selling, repairing and building short-lived, inefficient, wind and solar farms have no interest in replacing coal-burning power plants with highly efficient, environment- friendly, ultra-safe, Generation III+ reactors or Molten Salt Reactors that cannot melt down, cannot generate the hydrogen that exploded at Chernobyl and Fukushima – and can even consume much of our stored nuclear “waste” as fuel.

With these facts in mind, how can “environmentalists” support wind farms that require carbon-burning backup generators, have only a 20-year lifespan, are difficult to recycle and have larger death prints than nuclear power, which operates 24/7, has a much smaller carbon footprint, a 60-year lifespan, is 90% efficient, requires very little land, and kills no birds or bats?


Coming up next week, Episode 26 – Tilted Economics – Public Fund Pillaging


Links and References

  1. Next Episode – Episode 26 – Tilted Economics – Public Fund Pillaging
  2. Previous Episode – Episode 24 – Blowing in the Wind – An Eagles Nightmare
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://scotlandagainstspin.org/2021/07/caithness-windfarm-information-forum-cwif-accident-statistics/
  8. https://scotlandagainstspin.org/turbine-accident-statistics/
  9. https://www.unscear.org/unscear/en/publications/2016.html
  10. https://www.nytimes.com/2012/02/14/science/earth/after-disclosure-of-sierra-clubs-gifts-from-gas-driller-a-roiling-debate.html
  11. https://science.time.com/2012/02/02/exclusive-how-the-sierra-club-took-millions-from-the-natural-gas-industry-and-why-they-stopped/
  12. https://www.linkedin.com/in/bryan-walsh-9881b0/
  13. https://www.imperial.ac.uk/news/153886/fires-major-cause-wind-farm-failure/
  14. https://www.linkedin.com/in/colin-smith-3ba82616/
  15. https://horrorhistory.net/2020/10/29/two-men-trapped-on-top-of-a-burning-wind-turbine-perish/
  16. https://www.reddit.com/r/pics/comments/1q0sca/last_week_two_engineers_died_when_the_windmill/
  17. https://www.youtube.com/watch?v=MVHzfUWul2Y
  18. https://wiseenergy.org/Energy/Wind_Economics/Bats_and_Turbines.pdf
  19. https://www.youtube.com/watch?v=nemy4TD4I3A
  20. https://atomicinsights.com/saving-the-environment-from-environmentalism-2/
  21. https://www.linkedin.com/in/paul-lorenzini-bb4a2610/
  22. https://www.youtube.com/watch?v=uqZTsy3Dav8
  23. https://climatechangedispatch.com/wind-turbines-destroy-habitats/
  24. https://www.newscientist.com/article/dn7046-hydroelectric-powers-dirty-secret-revealed/
  25. https://www.linkedin.com/in/duncan-graham-rowe-18008bb/
  26. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/infrasound
  27. https://www.sciencedirect.com/science/article/pii/S1364032121013022
  28. https://www.nature.com/articles/s41598-021-97107-8
  29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653647/
  30. https://www.theguardian.com/world/2021/nov/08/french-couple-wins-legal-fight-wind-turbine-syndrome-windfarm-health
  31. https://www.linkedin.com/in/jenni-radun-a535b92/
  32. https://www.linkedin.com/in/henna-maula-524253aa/
  33. https://www.linkedin.com/in/jukka-ker%C3%A4nen-368724a/
  34. https://www.linkedin.com/in/reijo-alakoivu/
  35. https://www.linkedin.com/in/valtteri-hongisto-5a33318/
  36. https://www.linkedin.com/in/chun-hsiang-chiu-208169143/
  37. https://www.linkedin.com/in/shih-chun-candice-lung-1024b9205/
  38. https://www.linkedin.com/in/jing-shiang-hwang-7aa19954/
  39. https://www.linkedin.com/in/christel-fockaert-b6829a22a/
  40. https://www.linkedin.com/in/alice-terrasse-1b12b97b/

#UnintendedConsequences #GeorgeErickson #FissionEnergy #NuclearEnergy #TheThoriumNetwork #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #WindTurbines

Episode 24 – Blowing in the Wind. An Eagles Nightmare – Unintended Consequences – Chapter 9 Part 1

Eagle and Turbine

Blowin’ Wind

I was thrilled when the first windmills appeared on the Laurentian Divide near my hometown of Virginia, Minnesota, but a few years later, having noticed a significant amount of “down time,” I checked on wind power’s record with the help of my new associates in the Thorium Energy Alliance and discovered that the windmill industry had been selling more sizzle than steak.

During the “green” search for energy alternatives, which was guided by an “anything but nuclear” bias, the Sierra Club and others to which I once belonged took pains to define what was “renewable” and what was not. In so doing, they deliberately (and ironically), excluded CO2-free nuclear power, even though we have enough uranium and thorium to last 100,000 years.

Because those who profit from wind and solar said nothing about their carbon footprints, environmental damage, resource use, inefficiency, bird, bat and human deaths (death prints) and the need for huge subsidies, we drank their Kool-Aid, and now wonder why it’s making us sick. Well, here’s why, from many points of view.

Number 1 – Safety

Windmills kill 1 million birds and 1 million bats per year, even as insect borne diseases like Zika, dengue fever and malaria are increasing. (Bats can be killed by just getting too close to the low pressure area that accompanies each blade, which ruptures their lungs) How “green” is that?

Energy company to pay up to $35 million after turbines killed eagles by Lindsey Bever, 9 April 2022

150 Eagles Killed. The Money Won’t Bring Them Back

Shouldn’t environmentalists care that, according to Save the Eagles International, “windmills kill 30 million birds and 50 million bats per year.”

George Erickson
Birds in Flight

Spain’s 18,000 wind turbines are killing 6-18 million birds and bats yearly – actual carcass count

Spanish Ornithological Society

Shouldn’t they care that Pacific Corp., which owns 13 windfarms, has sued the U. S. Interior Department to keep it from revealing how many birds and bats their windmills have killed?

Dead Eagle Data: Buffet/Berkshire/PacifiCorp Don’t Want You to Know

Don’t these “environmentalists” care that, according to Science magazine, a “single colony of 150 brown bats has been estimated to eat nearly 1.3 million disease-carrying insects each year”? Shouldn’t they know that, according to the US Geological Survey, bats consume harmful pests that feed on crops, providing about USD 23 billion in benefits to America’s agricultural industry every year?

53 Billion Reasons Why Bats are Important

United States Geological Survey

“North America lost 3 billion birds between 1970 and 2019” [ WSJ] but no one mentions windmills for contributing to this disaster!

Birds Are Vanishing From North America

The number of birds in the United States and Canada has declined by 3 billion, or 29 percent, over the past half-century, scientists find.

Carl Zimmer 19 September 2019

Part 1 of Chapter 9 continues next week… Vanishing Humans…


Coming up next week, Episode 25 – Hazards to Humans. The Blades of Death.


Links and References

  1. Next Episode – Episode 25 – Hazards to Humans. The Blades of Death
  2. Previous Episode – Episode 23 – Can’t Afford a Model T? How About a LFTR?
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://en.wikipedia.org/wiki/Virginia,_Minnesota
  8. https://thoriumenergyalliance.com/resource/burning-windmill/
  9. https://en.wikipedia.org/wiki/Thorium_Energy_Alliance
  10. https://www.sierraclub.org/about-sierra-club
  11. https://en.wikipedia.org/wiki/Sierra_Club
  12. https://www.washingtonpost.com/business/2022/04/09/eagle-turbine-deaths-settlement/
  13. https://www.linkedin.com/in/lindseybever/
  14. https://www.theguardian.com/environment/2022/apr/07/wind-energy-company-guilty-killing-eagles
  15. https://savetheeagles.wordpress.com/
  16. https://www.oregonlive.com/business/2014/11/pacificorp_sues_to_block_relea.html
  17. https://www.masterresource.org/cuisinarts-of-the-air/wind-industry-dead-eagle-problem-1/
  18. https://www.usgs.gov/faqs/why-are-bats-important
  19. https://www.nytimes.com/2019/09/19/science/bird-populations-america-canada.html?
  20. https://www.linkedin.com/in/carlzimmer/
  21. https://en.wikipedia.org/wiki/Spanish_Ornithological_Society
  22. https://earthsky.org/human-world/loss-of-bats-will-hurt-agriculture/
  23. https://www.science.org/content/article/three-billion-north-american-birds-have-vanished-1970-surveys-show

#UnintendedConsequences #GeorgeErickson #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire #Eagles #Bats #Birds #SierraClub #WindTurbines

Episode 23 – Can’t Afford a Model T? How About a LFTR? – Unintended Consequences – Chapter 8 Part 7

15 Millionth Ford Model T
The Model T Ford made motoring what it is today: affordable, reliable, ubiquitous with 20th century living. It’s this same dogmatic approach to manufactured simplification that will make Fission the energy of the 21st Century.

Can’t afford it?

A modern, 1 GW LWR generates 9,000,000 kWhrs per year which, at 10 cents per kWhr, creates revenue of USD 900,400,000 per year. Deduct USD 220 million for operating expenses for a profit of USD 680 million per year. California’s Diablo nuclear plant generates electricity for about 3 cents per kWhr.

If the plant’s two reactors cost USD 7 billion, their combined profit will repay the 7 billion in 5.7 years, after which they will net USD 1.3 billion/year while employing about 1,000 well-paid workers.

While we temporise, Russia and South Korea are building modular reactors (conventional and MSRs), for sale abroad, some of which will be mounted on barges that can be towed to coastal cities, thus making long transmission lines, with their 10% power loss, unnecessary. In 2020, the first of these barges began operation in Pevek, a town in eastern Siberia. (China makes a 1 GWe reactor for USD 3B in less than 5 years – Dr. Alex Cannara.)

MURMANSK, RUSSIA – AUGUST 23, 2018: The Akademik Lomonosov, a barge containing two nuclear reactors, is pictured in Murmansk during its departure for Pevek, Chukotka Autonomous Area, on Russia’s Arctic coast where it will function as a nuclear power station; built at St Petersburg’s Baltic Shipyard, the Akademik Lomonosov was towed in 2018 from the Baltic Sea to an Atomflot base in Murmansk on Russia’s Barents Sea coast to be loaded with nuclear fuel. Lev Fedoseyev/TASS (Photo by Lev Fedoseyev\TASS via Getty Images)

In 2016, Russia inaugurated a commercial Fast Breeder Reactor (FBR) that extracts nearly 100% of the energy value of uranium. (LWRs utilize less than 5%.) The FBR creates close to zero waste and guarantees that we will never run out of thorium, uranium and plutonium, which yield 1.7 million times more energy per kilogram than crude oil.

Russia Sets New Domestic Nuclear Generation Record

Canadian Government agrees to work with United Kingdom on nuclear power

Instead of pursuing these profitable programs, we [USA] have spent USD 400 billion on worthless F-35 jet fighters plus USD 2 billion PER WEEK in Afghanistan – AND there’s that missing USD 8.5 TRILLION that the Pentagon can’t find. [The Pentagon’s $35 Trillion Accounting Black Hole, by Michael Rainey, January 23, 2020]

The US Air Force Quietly Admits the F-35 Is a Failure

Penta-Gone! – The Pentagon’s $35 Trillion Accounting Black Hole

Meanwhile, according to the GUARDIAN, “in 2013, coal, oil and gas companies spent USD 670 billion searching for more fossil fuels, investments that could be worthless if action on global warming slashes allowed emissions.”

Leave fossil fuels buried to prevent climate change, study urges

California plans a USD 100 billion high speed train to serve impatient commuters between San Francisco and Los Angeles, and in 2014, Wall Street paid over USD 28 billion in bonuses to needy executives. If you include greedy sports team owners and players who, between 2000 and 2010, received 12 billion tax dollars to help pay for their arenas, the total could exceed USD 1 trillion.

“When you’re in a hole, stop digging,”

Bill McKibben, co-founder of 350.org

With that money, we could easily build enough MSRs to end the burning of fossil fuels for generating electricity while drastically cutting carbon dioxide production.

Russia offers nuclear desalination bundle

According to WORLD NUCLEAR NEWS, Russia’s Rosatom Overseas intends to sell desalination facilities powered by nuclear power plants to its export markets: Dzhomart Aliyev, the head of Rosatom Overseas, says that the company sees ‘a significant potential in foreign markets,’ and is offering two LWRs producing 1200 MW each to Egypt’s Ministry of Electricity as part of a combined power and desalination plant.

“Desalination units can produce 170,000 cubic meters of potable water/day with 850 MWh of electricity per day. This would use only about 3% of the output of a 1200 MWe nuclear plant. In addition, two desalination units are also being considered for inclusion in Iran’s plan to expand the Bushehr power plant with Russian technology, and another agreement between Argentina and Russia also includes desalination with nuclear power.” Dzhomart Aliyev, chief executive officer of Rusatom Overseas.

In 2016, the Vice President of Rosatom reported that the company plans to build more than 90 plants in the pipeline worth some USD 110 Billion, with the aim of delivering 1000 GW by 2050.

“By 2030 we must build 28 nuclear power units. This is nearly the same as the number of units made or commissioned over the entire Soviet period… ROSATOM, the Russian nuclear power corporation and builders of the Kundamkulam nuclear power plant in India, has orders for building many nuclear power units abroad.” (XXII Nuclear Inter Jura 2016 Proceedings of the Congress)

Vladimir Putin, President of Russia

Stratfor Global Intelligence reported in an October, 2015 article titled Russia: Exporting Influence, One Nuclear Reactor at a Time that “Rosatom estimated that the value of orders has reached USD 300 billion, with 30 plants in 12 countries. From South Africa to Argentina to Vietnam to… Saudi Arabia, there appears to be no region where Russia does not seek to send its nuclear exports.”

In addition, China has purchased four, 1200 MW Russian reactors. Rosatom will also supply the fuel for a new Chinese- designed fast reactor.

However, our [USA] nuclear industry, opposed by Climate deniers like Donald J Trump, fervent “greens” and powerful carbon companies that put profit before planet, struggles to stay alive.

In Why Not Nuclear? Brian King described our failure to build Generation IV nuclear plants that, unlike LWRs, take advantage of high-temperature coolants such as liquid metals or liquid salts that improve efficiency.

“Argonne National Laboratory held the major responsibility for developing nuclear power in the U.S. By 1980, there were two main goals: Develop a nuclear plant that can’t melt down, then build a reactor that can run on waste from nuclear power plants…

“In the early 80’s Argonne opened a site for an experimental breeder reactor in Idaho. About five years later [two weeks before Chernobyl], they were ready for a demonstration. Scientists from around the globe were invited to watch what would happen if there was a loss of coolant to the reactor, a condition similar to the event at Fukushima where the cores of three reactors overheated and melted.

“Dr. C. Till, the director of the Generation IV project, calmly watched the gauges on the panel as core temperature briefly increased, then rapidly dropped as the reactor shut down without any intervention!

“The Argonne Generation IV project was a success, but it couldn’t get past the anti-nuke politics of the 1990’s, so it was shut down by the Clinton administration because they said we didn’t need it.

“One can only imagine what the world would look like today, with a fleet of Generation IV nuclear plants that would run safely for centuries on all of the waste at storage sites around the globe. No heat-trapping carbon dioxide would have been created – only ever increasing amounts of clean, reliable power. So why not nuclear power?

“Unfortunately, most environmentalists oppose nuclear power, as do many liberals. The Democratic Party is afraid of anti-nuclear sentiment… like the Nation Magazine, the Sierra Club and others. Why are all these people against such a safe and promising source of energy?

“… nuclear power has been tarred with the same brush as nuclear weapons. Nuclear power plants can’t explode like bombs, but people still think that way….

“There is also a matter of group prejudice, not unlike a fervently religious group or an audience at a sports event of great importance to local fans. People are afraid to go against the beliefs of their peers, no matter how unsubstantiated those beliefs may be.

Biden launches $6 billion effort to save nuclear power plants, to help combat climate change, 22 April 2022

”Finally, some good news: In July, 2018, Advanced Reactor Concepts (ARC) and Canada’s New Brunswick Power agreed to build a sodium-cooled, small modular reactor (SMR) – and thereafter at other sites worldwide.

The ARC-100 Advanced Small Modular Reactor

“The ARC-100 includes a passive, “walk away-safe” design that ensures the reactor cannot melt down – even if the plant loses all electrical power. The ARC-100 can consume the nuclear waste produced by LWRs and operate for 20 years without refuelling. Ontario approves nuclear.

OPG paving the way for Small Modular Reactor deployment, 6 October 2020

Small Modular Reactors

  • Their operation can be based on Gen II or Gen IV technologies.
  • Most of them generate less than 300 MW.
  • They run independent without active cooling (or offsite power)
  • They are small enough to have the entire reactor module fabricated at a central facility and then shipped by rail or by truck.

TerraPower advances plans for next-gen nuclear plants, earning Bill Gates’ praise

Starting in 2018, China will begin turning coal plants into nuclear reactors, by Graham Templeton,  23 November 2016


Why a Greenpeace co-founder went nuclear, by Erika Lovley 4 March 2008

Patrick Moore: Why I Left Greenpeace

Canada to boost nuclear power to help meet climate target, 15 March 2015

South Korea reactors That “Won’t Melt Down” approved for US in contract between Doosan and NuScale Power.

August 2020

South Korea companies develop molten salt reactor for shipping, power generation, 24 June 2021

Under the agreement, the Korea Atomic Energy Research Institute and Samsung Heavy Industries plan to develop molten salt reactors for marine propulsion and floating nuclear power plants, using molten fluoride salts as the primary coolant at low pressure.

KAERI, 17 June 2021

Poland goes nuclear with plan to build six reactors by 2040, by David Rogers, 9 November 2020


Dr Richard Steeves at Rethinking Nuclear

Advanced Nuclear Reactors by Dr Richard Steeves

Dr. Steeves drives an electric car and flies an electric airplane.

Dr. Richard Steeves

Nuclear Q&A prepared by The Finnish Greens for Science and Technology


The Tennessee Valley Authority announces new nuclear programme


Nuclear Power: The Road to a Carbon Free Future, IAEA 9 Jan 2020


Coming up next week, Episode 24 – Blowing in the Wind


Links and References

  1. Next Episode – Episode 24 – Blowing in the Wind
  2. Previous Episode – Episode 22 – The Pros of LFTRs. Why They Are So Cool
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://en.wikipedia.org/wiki/Ford_Model_T
  8. https://www.linkedin.com/in/alex-cannara-6a1b7a3/
  9. https://rosatom.ru/en/press-centre/news/rosatom-world-s-only-floating-nuclear-power-plant-enters-full-commercial-exploitation/
  10. https://www-atomic–energy-ru.translate.goog/news/2016/08/10/68139?utm_source=dlvr.it&utm_medium=twitter&_x_tr_sl=ru&_x_tr_tl=en&_x_tr_hl=en
  11. https://www.powermag.com/russia-sets-new-domestic-nuclear-generation-record/
  12. https://www.extremetech.com/extreme/320295-the-us-air-force-quietly-admits-the-f-35-is-a-failure
  13. https://www.stripes.com/branches/navy/2022-01-28/photos-leaked-F-35-fighter-jet-crashed-into-South-China-Sea-4448944.html
  14. https://finance.yahoo.com/news/pentagon-35-trillion-accounting-black-231154593.html
  15. https://www.theguardian.com/environment/2015/jan/07/much-worlds-fossil-fuel-reserve-must-stay-buried-prevent-climate-change-study-says
  16. https://gofossilfree.org/
  17. https://350.org/
  18. https://www.linkedin.com/in/bill-mckibben-6174131b7/
  19. https://www.world-nuclear-news.org/NN-Russia-offers-nuclear-desalination-bundle-0403151.html
  20. https://www.rusatom-overseas.com/
  21. https://www.tehrantimes.com/news/457339/Construction-of-phases-2-3-of-Bushehr-nuclear-plant-has-started
  22. http://aidn-inla.be/content/uploads/2016/12/proceedings-new-delhi-2016.pdf
  23. http://en.kremlin.ru/
  24. https://worldview.stratfor.com/article/russia-exporting-influence-one-nuclear-reactor-time
  25. https://neutronbytes.com/2019/04/06/russia-to-build-four-1200-mw-vver-at-two-sites-in-china/
  26. https://www.cbsnews.com/news/nuclear-power-biden-climate-change/
  27. https://www.arcenergy.co/technology
  28. https://energyrealityproject.com/nuclear-power-climate-change-warrior-for-the-21st-century-2/
  29. https://www.opg.com/media_releases/opg-paving-the-way-for-small-modular-reactor-deployment/
  30. https://www.geekwire.com/2020/terrapower-advances-plans-next-gen-nuclear-plants-earning-bill-gates-praise/
  31. https://www.energy.gov/ne/versatile-test-reactor
  32. https://www.extremetech.com/extreme/239588-starting-2018-china-will-begin-turning-coal-plants-nuclear-reactors
  33. https://twitter.com/grahamtempleton
  34. https://www.politico.com/story/2008/03/why-a-greenpeace-co-founder-went-nuclear-008835
  35. https://geneticliteracyproject.org/2016/10/03/greenpeace-co-founder-patrick-moore-makes-case-sustainable-gmo-golden-rice/
  36. https://www.prageru.com/video/why-i-left-greenpeace
  37. https://phys.org/news/2018-03-canada-boost-nuclear-power-climate.html
  38. https://www.hellenicshippingnews.com/south-korea-companies-develop-molten-salt-reactor-for-shipping-power-generation/
  39. https://www.samsungshi.com/eng/default.aspx
  40. https://www.globalconstructionreview.com/poland-goes-nuclear-plan-build-six-reactors-2040/
  41. https://emerging-europe.com/voices/the-first-polish-nuclear-plant-will-eventually-be-built/
  42. https://en.wikipedia.org/wiki/Opole_Power_Plant
  43. https://rethinkingnuclear.org/who-we-are/
  44. https://www.linkedin.com/in/richard-steeves-373808a5/
  45. https://rethinkingnuclear.org/advanced-nuclear-reactors/
  46. https://rethinkingnuclear.org/articles/evolution-of-more-innovative-reactor-designs/
  47. https://www.viite.fi/2021/01/20/nuclear-qa/
  48. https://www.world-nuclear-news.org/Articles/TVA-announces-new-nuclear-programme
  49. https://www.youtube.com/watch?v=7ravKXD4iqQ
  50. https://TheThoriumNetwork.com
  51. https://ThoriumEnergyAlliance.com/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire #Russia #China #SouthKorea #Poland #USA #Iran #ModelTFord

Episode 22 – The Pros of LFTRs. Why They Are So Cool – Unintended Consequences – Chapter 8 Part 6

Russia Considering Thorium for Waste Burning

Advantages of LFTRs

Many of these also apply to MSRs that use Uranium)

  • No CO2 emissions.
  • Produce only a small amount of low radioactivity waste that is benign in 350 years.
  • The liquid fuel, besides being at 700-1000 degrees C, contains isotopes fatal to saboteurs.
  • Do not require water cooling, so hydrogen and steam explosions are eliminated.
  • Don’t need periodic refuelling shutdowns because the fuel is supplied as needed and the by-products are constantly removed. (LWRs are shut down every 2-3 years to replace about ¼ of the fuel rods, but, LFTRs can run much longer.)
  • Thorium 232 is far more abundant than U-235. Well suited to areas where water is scarce.
  • Do not need huge containment domes because they operate at atmospheric pressure. Breed their own fuel.
  • Can’t “melt down” because the fuel/coolant is already liquid, and the reactor can handle high temperatures.
  • Fluoride salts are less dangerous than the super-heated water used by conventional reactors, and they could replace the world’s coal-powered plants by 2050.
  • Are suitable for modular factory production, truck transport and on-site assembly.
  • Create the Plutonium-238 that powers NASA’s deep space exploration vehicles.
  • Are intrinsically safe: Overheating expands the fuel/salt, decreasing its density, which lowers the fission rate.

Also at play is Doppler Broadening

Fighting Doppler Broadening a.k.a the Doppler Effect
  • If there is a loss of electric power, the molten salt fuel quickly melts a freeze plug, automatically draining the fuel into a tank, where it cools and solidifies.
  • Highly efficient. At least 99% of a LFTR’s Thorium is consumed, compared to about 4% of the uranium in LWRs.
  • Are highly scalable – 10 megaWatt to 2,000 MW plants. A 200 MW LFTR could be transported on a few semi-trailer trucks.

Micro-Reactors by Brian Yang, 16 January 2019

  • Cost less than LWRs. Can consume plutonium.
Rising Costs of Old Nuclear Energy Systems
Rising Costs of Old Nuclear Energy Systems by Atkins Engineering 2014

Can thorium reactors dispose of weapons-grade plutonium? by Michael Irving

Brattle Group study shows value of US nuclear industry

U.S. funds projects on tackling waste from advanced nuclear plants by Valerie Volcovici  and Timothy Gardner

  • Although our current LWRs are very safe and highly efficient, LFTRS are even more productive, and they cannot melt down.
  • Data from the Australian Nuclear Society and Technological Organization of the Australian government:
    + Thorium fuelled molten salt reactors have an energy return ratio of 2,000 to 1. [Also called Energy Density]
    + Our current LWRs that are fuelled with uranium have an energy return ratio of 75 to 1.
    + Coal and gas have an energy return ratio of about 30 to 1. Wind has an energy return ratio of 4 to 1.
    + Solar has an energy return ratio of 1.6 to 1.

Phasing Out Coal Will Require Germany to Build New Gas Plants, by Jesper Starn, June 22, 2021

Big Backpedal: A Week After Shutting its Coal-Fired Plants Germany Forced to Reopen Them, by StopTheseThings, April 25, 2021

“Officials say the weather is partly to blame.”

Germany on Coal Energy Highs and Wind Energy Lows

Germany: Coal tops wind as primary electricity source by DW

Germany 2021: coal generation is rising, but the switch to gas should continue, by Simon Göss, 23 September 2021

“The increase in coal-fired power generation is thus mainly driven by low renewable generation, increased electricity demand and partly also by the high gas prices this year.”

Simon Göss

Coming up next week, Episode 23 – Can’t Afford a Model T? How About a LFTR?


Links and References

  1. Next Episode – Episode 23 – Can’t Afford a Model T? How About a LFTR
  2. Previous Episode – Episode 21 – No Big Noises Here. How a LFTR is Proliferation Proof
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://lftrsuk.blogspot.com/2011/07/radioactive-nuclear-waste-from-lftrs.html
  8. https://www.nuclear-power.com/glossary/doppler-broadening/
  9. https://analyticalscience.wiley.com/do/10.1002/gitlab.15855
  10. https://www.nextbigfuture.com/2019/01/micro-reactors-as-cheap-as-natural-gas-without-air-pollution.html
  11. https://www.linkedin.com/in/brian-wang-93645
  12. https://thebulletin.org/2019/02/the-pentagon-wants-to-boldly-go-where-no-nuclear-reactor-has-gone-before-it-wont-work/
  13. https://www.lanl.gov/discover/publications/1663/2019-february/megapower.php
  14. https://www.world-nuclear-news.org/C-Brattle-Group-study-shows-value-of-US-nuclear-industry-1007157.html
  15. https://www.reuters.com/business/environment/us-funds-projects-tackling-waste-advanced-nuclear-plants-2022-03-10/
  16. https://www.linkedin.com/in/valerie-volcovici-086b094/
  17. https://www.linkedin.com/in/timothy-gardner-1448953/
  18. https://www.ansto.gov.au/our-science/nuclear-technologies/reactor-systems/advanced-reactors/evolution-of-molten-salt
  19. https://www.bloomberg.com/news/articles/2021-06-21/phasing-out-coal-will-require-germany-to-build-new-gas-plants#xj4y7vzkg
  20. https://www.linkedin.com/in/jesper-starn-03b7681b8/
  21. https://stopthesethings.com/2021/04/25/big-backpedal-a-week-after-shutting-its-coal-fired-plants-germany-forced-to-reopen-them/
  22. https://www.dw.com/en/germany-coal-tops-wind-as-primary-electricity-source/a-59168105
  23. https://energypost.eu/germany-2021-coal-generation-is-rising-but-the-switch-to-gas-should-continue/
  24. https://www.linkedin.com/in/simon-g%C3%B6%C3%9F-aa98885a/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

Episode 21 – Proliferation? Not on Our Watch – Unintended Consequences – Chapter 8 Part 5

Nuclear Explosion

Taking the Easiest Course of Action

It would be very difficult to make a weapon from LFTR fuels because the gamma rays emitted by the U-232 in the fuel would harm technicians and damage the bomb’s electronics.

Uranium could be stolen during enriching, production of pellets, delivery to the reactor, and for long-term storage, but LFTRs only use external uranium to start the reaction, after which time uranium is produced within the reactor from thorium.

The Most Radioactive Places on Earth

The United Kingdom tried unsuccessfully over a period of 10 years, from the 1950’s to the 1960’s, to produce a weapon from Thorium. They gave up and switched to the uranium path. Still today, 1.5 tonnes of Thorium remain stored from that program. This is enough to power the entire UK for 10 years – Carbon Free.

The USA fired one Thorium driven test in 1955 (MET/Operation Teapot), but the results so poor and complications so high they did no further.

A 1 GW LWR [Light Water Reactor] requires about 1.2 tons of uranium per year, but a 1 GW LFTR only needs a one-time “kick-start” of 500 pounds [225 kg] of U-235 plus 1 ton of Thorium per year during its 60 year lifespan.

The half-life of Thorium 232 is 14 billion years, so it is not hazardous due to its extremely slow decay.

The primary physical advantage of Thorium fuel is that it uniquely makes possible a breeder reactor that runs with slow neutrons, otherwise known as a thermal breeder reactor. These reactors are often considered simpler than the more traditional fast-neutron breeders.

IAEA 2005

[When Thorium 232 takes up a neutron, the subsequent decay takes two paths: mostly U233 and some U232. The U233 provides most of the useful energy production by Fission. U232 provides protection against proliferation as several decay daughters are high energy gamma emitters – meaning they burn out silicon chips. For example the gamma spike coming from Thallium 208 is 2.6 MeV. ]

[Shielding using advanced materials and methods, such as distance (air), lead, and water can reduce radiation energy to levels where dosages are at recommended levels around 10 microSiverts per hour or 100 milliSiverts per year.

Note that there have been many examples of doses much higher than this causing no concern, such as 350 microSiverts per hour received by Albert Stevens for over 20 years.

Radiation shielding is a mass of absorbing material placed between yourself and the source of radiation in order to reduce the radiation to a level that is safer for humans.

This is measured by using a concept called the halving thickness – the thickness of a material required to halve the energy of the radiation passing through it.

Remember also, that Radiation decreases with distance in accordance with the inverse square law.]

Radiation Halving Thickness Chart

Material100 keV200 keV500 keV
Air3555 cm4359 cm6189 cm
Water4.15 cm5.1 cm7.15 cm
Carbon2.07 cm2.53 cm3.54 cm
Aluminium1.59 cm2.14 cm3.05 cm
Iron0.26 cm0.64 cm1.06 cm
Copper0.18 cm0.53 cm0.95 cm
Lead0.012 cm0.068 cm0.42 cm
Radiation Halving Thickness Chart

Quotes by Albert Einstein

“I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.”

“Had I known that the Germans would not succeed in producing an atomic bomb, I never would have lifted a finger,” 

“I made one great mistake in my life-when I signed the letter to President Roosevelt recommending that atom bombs be made but there was some justification-the danger that the Germans would make them.”

“The release of atomic power has changed everything except our way of thinking … the solution to this problem lies in the heart of mankind. If only I had known, I should have become a watchmaker.” – Albert said this in 1945, after the US bombed Japan with nuclear weapons and killed over 200,000 innocent civilians. Approximately 50,000 of them where children, 100,000 where women, and the balance the elderly. There were minor military casualties.

“Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius — and a lot of courage — to move in the opposite direction.”

“Peace cannot be kept by force. It can only be achieved by understanding.”

“Two things are infinite: the universe and human stupidity; and I’m not sure about the universe.”

“He who joyfully marches to music rank and file, has already earned my contempt. He has been given a large brain by mistake, since for him the spinal cord would surely suffice. This disgrace to civilisation should be done away with at once. Heroism at command, how violently I hate all this, how despicable and ignoble war is; I would rather be torn to shreds than be a part of so base an action. It is my conviction that killing under the cloak of war is nothing but an act of murder.”

Albert Einstein, the Grandfather of Fission Energy

Energy production is the only viable way away from militarisation of Fission Energy. In the same way fire is harnessed in a fireplace to warm our homes or make our steels, Invisible Fire, Fission Energy, Energy from the Atom, does the same.

We are blessed by people like Alvin Weinberg who dedicated their lives to the cause after witnessing how their scientific endeavours were employed with such militaristic zeal for death and destruction.

“Weinberg realised that you could use Thorium in an entirely new kind of reactor, one that would have zero risk of meltdown. … his team built a working reactor … and he spent the rest of his 18-year tenure trying to make Thorium the heart of the nation’s atomic power effort. He failed. Uranium reactors had already been established, and Hyman Rickover, defacto head of the US nuclear program, wanted the plutonium from uranium-powered nuclear plants to make bombs. Increasingly shunted aside, Weinberg was finally forced out in 1973.”

Richard Martin, 2009, Wired Magazine

Russia Investigates Thorium for Power Generation


Coming up next week, Episode 22 – The Pros of LFTRs. Why are they So Cool?


Links and References

  1. Next Episode – Episode 22 – The Pros of LFTRs. Why are they So Cool?
  2. Previous Episode – Episode 20 – Got a LFTR? What’s Under the Hood
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://en.wikipedia.org/wiki/Thorium_fuel_cycle#Uranium-232_contamination
  8. https://en.wikipedia.org/wiki/Albert_Stevens
  9. https://www.youtube.com/watch?v=TRL7o2kPqw0
  10. https://modernsurvivalblog.com/nuclear/nuclear-radiation-shielding-protection/
  11. https://en.wikipedia.org/wiki/Radioactive_contamination
  12. https://en.wikipedia.org/wiki/Gamma_ray
  13. https://www.nuclear-power.com/nuclear-engineering/materials-nuclear-engineering/properties-of-water/water-as-gamma-radiation-shielding/
  14. https://www.flickr.com/photos/mitopencourseware/3776104498/in/photostream/
  15. https://www.nuclear-power.com/nuclear-power/reactor-physics/atomic-nuclear-physics/radiation/shielding-of-ionizing-radiation/shielding-gamma-radiation/
  16. https://en.wikipedia.org/wiki/Uranium-232
  17. https://patreon.com/posts/39262802
  18. https://en.wikipedia.org/wiki/Albert_Einstein
  19. https://www.vintag.es/2016/04/amazing-black-and-white-photographs.html
  20. https://inktank.fi/five-fascinating-facts-you-didnt-know-about-albert-einstein/
  21. https://www.history.com/news/9-things-you-may-not-know-about-albert-einstein
  22. https://www.neimagazine.com/news/newsrussia-investigates-thorium-4986083/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

Episode 20 – Got a LFTR? What’s Under the Hood – Unintended Consequences – Chapter 8 Part 4

Liquid Fluoride Thorium Reactor by fmilluminati

How a LFTR works

In one type of LFTR, a liquid Thorium salt mixture circulates through the reactor core, releasing neutrons that convert Thorium 232 in an outer, shell-like “jacket” to Thorium 233. Thorium 232 cannot sustain a chain reaction, but it is fertile, meaning that it can be converted to fissile U-233 through neutron capture, also known as “breeding.”

Space LFTR by fmilluminati
Newcastle Molten Salt Burner

When a Uranium 233 atom absorbs a neutron, it fissions (splits), releasing huge amounts of energy and more neutrons that activate more Thorium 232. In summary, a LFTR turns Thorium-232 into U-233, which thoroughly fissions while producing only 10% as much “waste” as LWRs produce.

How Thorium “Burns”

“Thorium energy can help check CO2 and global warming, cut deadly air pollution, provide inexhaustible energy, and increase human prosperity. Our world is beset by global warming, pollution, resource conflicts, and energy poverty. Millions die from coal plant emissions. We war over mideast oil. Food supplies from sea and land are threatened. Developing nations’ growth exacerbates the crises. Few nations will adopt carbon taxes or energy policies against their economic self-interests to reduce global CO2 emissions. Energy cheaper than coal will dissuade all nations from burning coal. Innovative Thorium energy uses economic persuasion to end the pollution, to provide energy and prosperity to developing nations, and to create energy security for all people for all time.”

Dr. Robert Hargraves

Dr. Robert Hargraves has written articles and made presentations about the liquid fluoride Thorium reactor and energy cheaper than from coal – the only realistic way to dissuade nations from burning fossil fuels. His presentation “Aim High” about the technology and social benefits of the liquid fluoride Thorium reactor has been presented to audiences at Dartmouth ILEAD, Thayer School of Engineering, Brown University, Columbia Earth Institute, Williams College, Royal Institution, the Thorium Energy Alliance, the International Thorium Energy Association, Google, the American Nuclear Society, the President’s Blue Ribbon Commission of America’s Nuclear Future, and the Chinese Academy of Sciences. With coauthor Ralph Moir he has written articles for the American Physical Society Forum on Physics and Society: Liquid Fuel Nuclear Reactors (Jan 2011) and American Scientist: Liquid Fluoride Thorium Reactors (July 2010). Robert Hargraves is a study leader for energy policy at Dartmouth ILEAD. He was chief information officer at Boston Scientific Corporation and previously a senior consultant with Arthur D. Little. He founded a computer software firm, DTSS Incorporated while at Dartmouth College where he was assistant professor of mathematics and associate director of the computation center. He graduated from Brown University (PhD Physics 1967) and Dartmouth College (AB Mathematics and Physics 1961).

Dr. Robert Hargraves – Aim High! @ TEAC3

“This book presents a lucid explanation of the workings of Thorium-based reactors. It is must reading for anyone interested in our energy future.”

Leon Cooper, Brown University physicist and 1972 Nobel laureate for superconductivity

“As our energy future is essential I can strongly recommend the book for everybody interested in this most significant topic.”

Dr. George Olah, 1994 Nobel laureate for carbon chemistry

Amazon 5 Star comments on “Thorium – energy cheaper than coal” by Dr. Robert Hargraves

  • Why Thorium must be the Future of Energy, Robert Orr Jr.
  • Fascinating read with lots of calcs you can perform yourself, DGD
  • Thorium, what we should have done, B. Kirkpatrick
  • Fantastic book about this little known alternative nuclear energy source, ChicagoRichie
  • Should be in the hands of every science class and on top of every policy maker’s desk, R. Kame
  • A MUST HAVE resource on energy generation alternatives, George Whitehead
  • Get Free Energy, Abolish CO2, End Energy Dependency, Clean – Up the Planet and Make a Fortune. Kindle Customer
  • Essential education, Ames Gilbert
  • A solution for global climate change, Lawrence Baldwin
  • Wonderful book, written in text book style, Dot Dock
  • The place to go for Thorium info. Gerald M. Sutliff
  • Global warming killer, Red Avenger
  • Thorium reactors can be civilizations future for energy, Hill Country Bob
  • Thorium fuel in a breeder reactor implies limitless future energy, Fred W. Hallberg
  • On the ESSENTIAL BOOK LIST, James38

The half-life of Thorium 232, which constitutes most of the earth’s Thorium, is 14 billion years, so it is not hazardous due to its extremely slow decay. – Dr. George Erickson

Liquid Fluoride Thorium Reactors, American Scientist, 2010

“Given the diminished scale of LFTRs, it seems reasonable to project that reactors of 100 megawatts can be factory produced for a cost of around $200 million.”

Dr. Robert Hargraves – American Scientist, July 2010

Coming up next week, Episode 21 – No Big Noises Here. How a LFTR is Proliferation Proof.


Links and References

  1. Next Episode – Episode 21 – No Big Noises Here. How a LFTR is Proliferation Proof
  2. Previous Episode – Episode 19 – Want a Lift? Grab a LFTR
  3. Launching the Unintended Consequences Series
  4. Dr. George Erickson on LinkedIn
  5. Dr. George Erickson’s Website, Tundracub.com
  6. The full pdf version of Unintended Consequences
  7. https://www.deviantart.com/fmilluminati/art/Liquid-Fluoride-Thorium-Reactor-500641963
  8. https://en.wikipedia.org/wiki/Thorium
  9. https://engineering.dartmouth.edu/
  10. https://www.brown.edu/
  11. https://www.earth.columbia.edu/
  12. https://www.williams.edu/
  13. https://www.rigb.org/
  14. https://thoriumenergyalliance.com/
  15. http://www.thoriumenergyworld.com/organization.html
  16. https://talksat.withgoogle.com/
  17. https://www.ans.org/
  18. https://www.energy.gov/articles/blue-ribbon-commission-americas-nuclear-future-charter
  19. https://english.cas.cn/
  20. https://engage.aps.org/fps/home
  21. https://www.bostonscientific.com/en-US/Home.html
  22. https://www.adlittle.com/en
  23. https://home.dartmouth.edu/
  24. https://www.youtube.com/watch?v=BOoBTufkEog
  25. https://www.amazon.com/THORIUM-energy-cheaper-than-coal/dp/1478161299
  26. https://www.nobelprize.org/prizes/physics/1972/cooper/biographical/
  27. https://en.wikipedia.org/wiki/Leon_Cooper
  28. https://www.nobelprize.org/prizes/chemistry/1994/olah/biographical/
  29. https://en.wikipedia.org/wiki/George_Andrew_Olah
  30. https://www.americanscientist.org/article/liquid-fluoride-thorium-reactors
  31. https://www.americanscientist.org/author/robert_f._hargraves
  32. https://www.linkedin.com/in/roberthargraves/
  33. https://www.americanscientist.org/author/ralph_moir
  34. https://www.linkedin.com/in/ralph-moir-3a8b2615/
  35. https://www.americanscientist.org/article/not-so-fast-with-thorium
  36. https://energycentral.com/c/ec/lftr-american-scientist
  37. https://www.linkedin.com/in/charles-barton-b081499/

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #RobertHargraves #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day #InvisibleFire

Episode 19 – Want a Lift? Grab a LFTR – Unintended Consequences – Chapter 8 Part 3

Dr Alvin Weinberg at ORNL Stylised

What’s a LFTR?

A thoriumfuelled MSR [Molten Salt Reactor] is a Liquid Fluoride Thorium Reactor – a LFTR

Pronounced ‘LIFTER
A Lifetime of power in the palm of your hand [with Thorium]

With a half-life of 14 billion years, Thorium-232 is one of the safest, least radioactive elements in the world. Thorium-232 emits harmless alpha particles that cannot even penetrate skin, but when it becomes Th-233 in a Molten Salt Reactor, it becomes a potent source of power. Sunlight, living at high altitude and the emissions from your granite counter-top or a coal-burning plant are more hazardous than thorium-232.

LFTRs are even more fuel-efficient than uranium- fuelled MSRs, and they create little waste because a LFTR consumes close to 99% of the thorium-232. LWRs reactors consume just 3% of their uranium before the rods need to be changed. That’s like burning just a tiny part of a log while polluting the rest with chemicals you must store for years.

Just one pound of thorium can generate as much electricity as 1700 tons coal, so replacing coal-burning plants with LFTRs would eliminate one of the largest causes of climate change. That same pound (just a golf ball-size lump), can yield all the energy an individual will ever need, and just one cubic yard of thorium can power a small city for at least a year. In fact, if we were to replace ALL of our carbon-fuelled, electrical power production with LFTRs, we would eliminate 30 to 35% of all man-made greenhouse gas production.

From 1977 to 1982, the Light Water Reactor at Shippingport, Pennsylvania was powered with thorium, and when it was eventually shuttered, the reactor core was found to contain about 1% more fissile material (U233/235) than when it was loaded. (Thorium has also fuelled the Indian Point 1 facility and a German reactor.)

India, which has an abundance of thorium, is planning to build Thorium-powered reactors, as is China while we struggle to overcome our unwarranted fear of nuclear power. And in April, 2015, a European commission announced a project with 11 partners from science and industry to prove the innovative safety concepts of the Thorium-fuelled MSR and deliver a breakthrough in waste management.

Please read Thorium: the last great opportunity of the industrial age by David Archibald

Thorium: the last great opportunity of the industrial age, by David Archibald

To Slow Global Warming, We Need Nuclear Power by By Lamar Alexander and Sheldon Whitehouse

China Ramps Up New Nuclear Reactor Construction

China is Determined
China Nuclear Build Map – World Nuclear Association

Supplies

Thorium is four times as plentiful as uranium ore, which contains only 1% U-235. Besides being almost entirely usable, it is 400 times more abundant than uranium’s fissile U-235. Even at current use rates, uranium fuels can last for centuries, but thorium could power our world for thousands of years.

Just 1 ton of thorium is equivalent to 460 billion cubic meters of natural gas. We already have about 400,000 tons of thorium ore in “storage”, and we don’t need to mine thorium because our Rare-Earth Elements plant receives enough thorium to power the U. S. every year. Australia and India tie for the largest at about 500,000 tons, and China is well supplied.

A 1 GW LWR requires about 1.2 tons of uranium each year, but a 1 GW LFTR only needs a one-time “kick start” of 500 pounds of U-235 plus 1 ton of thorium each year.

Waste and Storage

Due to their high efficiency, LFTRs create only 1% of the waste that conventional reactors produce, and because only a small part of that waste needs storing for 400 years – not the thousands of years that LWR waste requires – repositories much smaller than Yucca mountain would easily suffice.

Furthermore, LFTRs can run almost forever because they produce enough neutrons to make their own fuel, and the toxicity from LFTR waste is 1/1000 that of LWR waste. So, the best way to eliminate most nuclear waste is to stop creating it with LWRs and replace them with reactors like MSRs or LFTRs that can utilize stored “waste” as fuel.

With no need for huge containment buildings, MSRs can be smaller in size and power than current reactors, so ships, factories, and cities could have their own power source, thus creating a more reliable, efficient power grid by cutting long transmission line losses that can run from 8 to 15%. Unfortunately, few elected officials will challenge the carbon industries that provide millions of jobs and wield great political power. As a consequence, thorium projects have received little to no help from our government, even though China and Canada are moving toward thorium, and India already has a reactor that runs on 20% thorium oxide.

GE Hitachi, ARC to license joint reactor in Canada; Siemens installs first live 3D-printed part

3D Printed Nuclear Reactor Core Microreactor ORNL, 25 May 2020

India on the road map of tripling nuclear power capacity

After our DOE signed an agreement with China, we gave them our MSR data. To supply its needs while MSRs are being built, China is relying on 27 conventional nuclear reactors plus 29 Generation III+ (solid fuel) nuclear plants that are under construction. China also intends to build an additional fifty-seven nuclear power plants, which is estimated to add at least 150 GigaWatts (GW) by 2030.

Nuclear Scientists Head to China to Test Experimental Reactors, by Stephen Stapczynski

China to start building 6-8 new nuclear reactors in 2018

“Global increase in nuclear power capacity in 2015 hit 10.2 gigawatts, the highest growth in 25 years driven by construction of new nuclear plants mainly in China…. We have never seen such an increase in nuclear capacity addition, mainly driven by China, South Korea and Russia,.. It shows that with the right policies, nuclear capacity can increase.”

Dr Fatih Birol, Executive Director, International Energy Agency, Paris Conference, Reuters, 28 June 2016
Russia Building the Akkuyu Nuclear Power Plant in Turkey

“When the China National Nuclear Power Manufacturing Corporation sought investors in 2015, they expected to raise a modest number of millions but they raised more than $280 billion.”

Dr. Alex Cannara

MIT: China Is Beating America In Nuclear Energy

In 2016, the Chinese Academy of Sciences allocated $1 billion to begin building LFTRs by 2020. As for Japan, which began to restart its reactors in 2015, a FUJI design for a 100 to 200 MW LFTR is being developed by a consortium from Japan, the U. S. and Russia at an estimated energy cost of just three cents/kWh. Furthermore, it appears that five years for construction and about $3 billion per reactor will be routine in China.

Fail-Safe Nuclear Power, By Richard Martin

China spending US$3.3 billion on molten salt nuclear reactors for faster aircraft carriers and in flying drones, December 6, 2017 by Brian Wang

Westinghouse’s eVinci would look a lot like a LFTR in operation. See more next week on how a LFTR works.

Westinghouse Electric’s parent company wants to put the nuclear company on the market by Anya Litvak

Westinghouse HQ
eVinci by Westinghouse

Coming up next week, Episode 20 – Got a LFTR? Lets Look Under the Hood


Links and References

1. Next Episode – Episode 20 – Got a LFTR? Lets Look Under the Hood
2. Previous Episode – Episode 18 – Pass the Salt Dear – How Fission Gets Rock Solid Stability
3. Launching the Unintended Consequences Series
4. Dr. George Erickson on LinkedIn
5. Dr. George Erickson’s Website, Tundracub.com
6. The full pdf version of Unintended Consequences
7. https://en.wikipedia.org/wiki/Shippingport_Atomic_Power_Station
8. https://wattsupwiththat.com/2015/05/16/thorium-the-last-great-opportunity-of-the-industrial-age/
9. https://www.amazon.com/David-Archibald/e/B00I32BANS/
10. https://www.nytimes.com/2016/12/21/opinion/to-slow-global-warming-we-need-nuclear-power.html?
11. https://www.linkedin.com/in/lamar-alexander-68290688/
12. https://www.linkedin.com/in/alexander-whitehouse/
13. https://neutronbytes.com/2020/07/11/china-ramps-up-new-nuclear-reactor-construction/
14. https://world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx
15. https://www.reutersevents.com/nuclear/ge-hitachi-arc-license-joint-reactor-canada-siemens-installs-first-live-3d-printed-part?
16. https://www.ornl.gov/news/3d-printed-nuclear-reactor-promises-faster-more-economical-path-nuclear-energy
17. https://www.thehindubusinessline.com/economy/india-on-the-roadmap-of-tripling-nuclear-power-capacity/article64295841.ece
18. https://www.thestatesman.com/india/indian-nuclear-reactor-at-kaiga-sets-world-record-for-continuous-operation-1502700962.html
19. https://www.bloomberg.com/news/articles/2017-09-21/nuclear-scientists-head-to-china-to-test-experimental-reactors
20. https://www.linkedin.com/in/stephen-stapczynski-61187919/
21. https://thedebrief.org/chinese-fusion-reactor-sets-new-record-of-1056-seconds/
22. https://neutronbytes.com/2018/04/02/china-to-start-6-8-new-nuclear-reactors-in-2018/
23. https://www.iea.org/contributors/dr-fatih-birol
24. https://www.linkedin.com/in/fatih-birol/
25. https://www.linkedin.com/in/alex-cannara-6a1b7a3/
26. https://dailycaller.com/2016/08/02/mit-china-is-beating-america-in-nuclear-energy/
27. http://climatecolab.org/web/guest/plans/-/plans/contestId/4/planId/15102
28. http://en.m.wikipedia.org/wiki/Fuji_MSR
29. https://www.technologyreview.com/2016/08/02/158134/fail-safe-nuclear-power/
30. https://linkedin.com/in/richard-martin-80344410/
31. https://www.patreon.com/posts/39262802
32. https://www.nextbigfuture.com/2017/12/china-spending-us3-3-billion-on-molten-salt-nuclear-reactors-for-faster-aircraft-carriers-and-in-flying-drones.html
33. https://www.linkedin.com/in/brian-wang-93645/
34. https://www.post-gazette.com/business/powersource/2022/05/10/westinghouse-for-sale-brookfield-energy-nuclear-sale-russia-ukraine-europe-evinci-microreactor-temelin-climate/stories/202205100052
35. https://www.linkedin.com/in/anya-litvak-a060096/
36. https://www.westinghousenuclear.com/new-plants/evinci-micro-reactor
37. https://www.youtube.com/watch?v=Us1WGZtzVCw

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #LFTR #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day

Interview #3, Dr. Reşat Uzmen, Nuclear Technology Director of FİGES. Part of the Thorium Student Guild Interview Series, “Leading to Nuclear”

Integrated Industrial Zone Powered by Molten Salt courtesy of Figes of Turkey
Dr. Reşat Uzmen

Since the 1960’s Turkey were trying to get involved with nuclear energy. Turkey was one of the countries that participated in the International Conference on the Peaceful Uses of Atomic Energy, held in Geneva in 1955 September. There is no doubt that Turkey wants to use nuclear energy for energy production. In Turkey, there are many experts that have knowledge about nuclear fission technology. Dr. Reşat Uzmen is one of the most important people who is experienced in the nuclear fuel area. During the interview, his ideas and visions enlighten us about the future of Molten Salt Fission Technology. Here is another instructive interview for building a MSR!

The Atoms for Peace symbol was placed over the door to the American swimming pool reactor building during the 1955 International Conference on the Peaceful Uses of Atomic Energy in Geneva, often called the Atoms for Peace conference.

Rana
President of the Student Guild
The Thorium Network

Leading to Nuclear Interview Series, Interview #3, Dr Resat Uzmen of Figes Turkey

Mr. Reşat, can you tell us a little about yourself?

I graduated from İstanbul Technical University (İTU) in the chemical engineering department. I did my master’s degree in İTU also. As soon as I finished the department I became a researcher in The Çekmece Nuclear Research and Training Center, known as ÇNAEM. My research was about how uranium could be treated to obtain an uranium concentrate. I did my doctor’s degree in that topic. Back then, it was so hard to get information because it is a delicate technology. That’s why we did the research by ourselves. Think about that: there was no internet! There was a library in ÇNAEM, it still remains there. All the reports that were collected from all over the world were kept here. We benefit from those reports that were about uranium and thorium. In addition, getting chemicals was difficult. The ores that we were working on were coming from Manisa so mine was tough to process. Despite all these obstacles Turkey needed uranium so we have done what has to be done. I am the founder of “the nuclear fuel technology department in ÇNAEM”. This department was focused on producing uranium fuel that could be ready for fuelling and we did it. We produced uranium pellets by ourselves in our laboratories. We did research about ore sorting of thorium and how it can be used in nuclear reactors. Now I am working as a nuclear technology director at FİGES.

Dr. Reşat Uzmen, Thorium NTE Field in Burdur Turkey

“Turkey is capable of designing its own reactor now!”

Dr. Reşat Uzmen

What are your thoughts on Turkey’s nuclear energy adventure? Although nuclear engineering education has been given at Hacettepe University since 1982, Turkey has never been able to gain an advantage in nuclear energy. What could be the main reasons for this?

Nuclear energy needs government support and government incentive. Government policy must include nuclear energy. In Turkey, nuclear energy was too personal. A government is formed then a team becomes the charge of the Turkey Atomic Energy Agency and this team is working hard, trying to encourage people about nuclear energy but then the new government is formed and the team is changed. Unfortunately, this is how it is done in Turkey. Also, you need money to build reactors. There were some countries that try to build a nuclear reactor in Turkey. Once CANDUs was very popular in Turkey. Canadians supported us a lot. Argentineans came with CAREM design and wanted to develop the design with Turkey also they wanted to build CAREM in Turkey, it was a great offer but the politicians at that time were not open up to this idea. Nuclear energy must be government policy and it should not be changed by different governments.

As you know, there is a PWR-type reactor under construction in cooperation with Rosatom and Akkuyu in our country. Do you think Turkey’s first reactor selection was the right choice?

This cooperation is not providing us any nuclear technology. When The Akkuyu Nuclear Power Plant is finished we will have a nuclear reactor that is operating in Turkey but we can not get any nuclear technology transformation. Right now Turkey can not construct the sensitive components of a nuclear reactor. Akkuyu is like a system that produces energy for Turkey. It would be the same thing if Russia build that plant in a place that is near Turkey. In addition, there is the fate of spent fuels. Russia takes away all the spent fuels, these spent fuels can be removed from Turkey in two ways: by water, starting from the Akkuyu harbor, the ship will pass through the Turkish straits, then pass to the Black Sea and pass through the Novorossiysk harbor to reach Siberia and by land, from Akkuyu it will arrive in Samsun or Trabzon then by water the ship will arrive in Siberia. I suppose spent fuels are going to be transported by water.

What are your thoughts on molten salt reactors?

Molten Salt Reactor is a Gen. 4 reactor and has a lot of advantages. First of all, the fuel of the MSR is molten salt so it is a liquid fuel. Since I am interested in the fuel production part of nuclear energy I am aware of the challenges of solid fuel production. Having liquid fuel is a big virtue. Liquid fuel can be ThF4-UF4. The fuel production step can proceed as: UF4 may be imported as enriched uranium. If you have the technology then UF₆ may be imported as enriched uranium then UF₆ can be converted to UF4. After that step fabrication of the liquid fuel is easier than solid fuel. Second, MSR has a lot of developments in the safety systems of a nuclear reactor. There is no fuel melting danger because it is already melted. The liquid fuel is approximately 700 °C. The important point is molten salt may freeze. If fuel temperature is below approximately 550°C the fuel becomes solid we don’t want that to happen. Also, the fuel has a negative temperature coefficient which means that as the temperature of the fuel rises reactivity of the fuel is going to decrease. There is a freeze plug at the bottom of the core. If the core overheats the freeze plug will melt and the contents of the core will be dropped into a containment tank fed by gravity. This is a precaution against the loss of coolant accident. One of the other advantages is reprocessing opportunity. It is possible with helium to remove volatile fission products from the reactor core. Tritium can be a problem but if the amount of tritium is below the critical level then it wouldn’t be a problem.

” Molten Salt Reactors are advantageous in many ways. The fuel is already melted, freeze plug is going to melt in case of an overheating issue, reproccessing is easier than the solid fuel. ”

FİGES took on the task of designing MSR’s heat exchangers in the SAMOFAR project and your designs were approved. Can you talk a bit about heat exchangers? What are the differences with a PWR exchanger? Why did it need to be redesigned?

There are a lot of differences between a PWR heat exchanger and an MSR heat exchanger. The basic difference is, that in a PWR heat exchanger steam is produced from water. MSR heat exchanger is working with molten salt to produce steam. FİGES finished calculations like the flow rate of the molten salt, the temperature of the molten salt, etc. for a heat exchanger of SAMOFAR. The heat exchanger is made of a material that is the same as the reactor core. In SAMOFAR, Hastelloy is used but boron carbide sheeting may be used for the heat exchanger.

Can you talk a little bit about your collaboration with Thorium Network?

The Founder of the Thorium Network Jeremiah has contacted FİGES about 5 months ago. We met him in one of the FİGES offices which are located in İstanbul. We have discussed what we have done in Turkey thus far. We signed an agreement about sharing networks. We share the thorium and molten salt reactor-based projects with them and they do the same.

If the idea of building an MSR in Turkey is accepted, where will FİGES take part in this project?

As FİGES, building an MSR in Turkey has two steps. The first step is about design. To design a reactor you need software. The existing codes are for solid fuel. First of all the codes that are going to be used for liquid fuel must be developed. There are companies that work to develop required software all around the world. We want to take part in the design step as FİGES. After the design is finished the second step comes. The second step is building the reactor. FİGES doesn’t have the base to build a reactor but an agreement can be made with companies that can build a nuclear power plant.

Do you have any advice you can give to nuclear power engineer candidates who want to work on MSR? What can students do about it?

There are tons of documents about Molten Salt Reactor Technology. These documents are about the material of the reactor core, software codes, design, etc. A student can find everything about MSR on the internet. In addition to this, students should follow the Denmark-based company that is called “Seaborg“. They have a compact molten salt reactor design. Also, there is another MSR design called “ThorCon“. Students can follow the articles, presentations, and events about these two MSR designs. As I said, students must research and follow the literature about Molten Salt Fission Technology.

. . .

It was a great opportunity for me to meet Mr. Reşat who has been working to develop nuclear energy in Turkey. I would like to thank him for his time and great answers.

As students, we are going to change the world step by step with Molten Salt Fission Technology by our side. We are going to continue doing interviews with key people in nuclear energy and MSR!

The Student Guild of the Thorium Network


LINKS AND REFERENCES:

  1. Dr. Reşat Uzmen on Linkedin
  2. Rana on Linkedin
  3. The interview on Youtube
  4. Figes AS
  5. SAMOFAR
  6. Atoms for Peace
  7. Interview #2, Mr. Emre Kiraç “Leading to Nuclear”
  8. Launching “Leading to Nuclear, Interviews by the Thorium Network Student Guild”
  9. The Thorium Student Guild

#ThoriumStudentGuild #LeadingToNuclear #Interview #ResatUzmen #Figes #Turkey

Episode 18 – Pass the Salt Dear – How Fission Gets Rock Solid Stability – Unintended Consequences – Chapter 8 Part 2

What’s an MSR? A Molten Salt Reactor of Course!

Molten Salt Reactors are superior in many ways to conventional reactors.

In a Molten Salt Reactor, the uranium (probably Thorium in the future), is dissolved in a liquid fluoride salt. (Although fluorine gas is corrosive, fluoride salts are not.) Fluoride salts also don’t break down under high temperatures or high radiation, and they lock up radioactive material, which prevents it from being released to the environment.

As noted earlier, Dr. Alvin Weinberg’s Oak Ridge MSR ran successfully for 22,000 hours during the sixties. However, the program was shelved, partly for political reasons and partly because we [USA] favoured Admiral Rickover’s water-cooled reactors.

Schematic of a Molten Salt Reactor

When uranium or thorium is combined with a liquid fluoride salt, there are no pellets, no zirconium tubes and no water, the source of the hydrogen that exploded at Chernobyl and Fukushima. The fluid that contains the uranium is also the heat-transfer agent, so no water is required for cooling. MSRs are also more efficient than LWR plants because the temperature of the molten salt is about 1300 F [700 C], whereas the temperature of the water in a conventional reactor is about 600 F [315 C], and higher heat creates more high-pressure steam to spin the turbines.

Thorium Debunk

This extra heat can also be used to generate more electricity, desalinate seawater, split water for hydrogen fuel cells, make ammonia for fertilizer and even extract CO2 from the air and our oceans to make gasoline and diesel fuel. In addition, MSRs can be fueled with 96% of our stored uranium “waste” – spent fuel – and the fissile material in our thousands of nuclear bombs.

Thorium: Kirk Sorensen at TEDxYYC

Why Hydrogen Needs Nuclear Power To Succeed by By Alan Mammoser – Mar 07, 2021

Hydrogen: The best shot for nuclear sustainability? by Susan Gallier, Nuclear News Dec 4, 2021

Because some MSR designs do not need to be water-cooled, those versions don’t risk a steam explosion that could propel radioactive isotopes into the environment. And because MSRs operate at atmospheric pressure, no huge, concrete containment dome is needed.

When the temperature of the liquid salt fuel rises as the chain reaction increases, the fuel expands, which decreases its density and slows the rate of fission, which prevents a “runaway” reaction. As a consequence, an MSR is inherently self-governing, and because the fuel is liquid, it can easily drain by gravity into a large containment reservoir. As a consequence, the results of a fuel “spill” from an MSR would be measured in square yards, not miles.

In the event of a power outage, a refrigerated salt plug at the bottom of the reactor automatically melts, allowing the fuel to drain into a tank, where it spreads out solidifies, stopping the reaction. In effect, MSRs are walk-away- safe.

Even if you abandon an MSR, the fuel will automatically drain and solidify without any assistance.

If the Fukushima reactor had been an MSR, there would have been no meltdown, and because radioactive by-products like caesium, iodine and strontium bind tightly to stable salts, they would not have been released into the environment. (In 2018 Jordan agreed to purchase two, 110 MW, South Korean molten salt reactors,)

May 2021 – Danish firm plans floating SMR for export South Korea firm to build floating nuclear plants. NuScale and Canadian firm to build floating MSRs. Saskatchewan Indigenous company to explore small MSRs.

August 2021 – Wall Street Journal – Small Reactors, Big Future for Nuclear Power


January 2022 – Modular Molten Salt Reactors Starting 2028

Progress

USEFUL MSR BYPRODUCTS

Besides producing CO2-free electricity, fissioning U-233 in an MSR creates essential industrial elements that include xenon, which is used in lasers, neodymium for super-strength magnets, rhodium, strontium, medical molybdenum-99, zirconium, ruthenium, palladium, iodine-131 for the treatment of thyroid cancers and bismuth-213, which is used for targeted cancer treatments.

Why are we so afraid of nuclear? By James Conca, 7 July 2015

Fuel needed for a 1,000 MW Power Plant per day

7 pounds Uranium 235No CO2
3.2 kg Uranium 235No CO2
9,000 tons Coal26,000 tons of CO2
240,000,000 cubic feet Natural gas320,000 cu ft of CO2
4,838 tons Natural gas16.6 tons of CO2

Coming up next week, Episode 19 – Want a Lift? Grab a LFTR


Links and References

1. Next Episode – Episode 19 – Want a Lift? Grab a LFTR
2. Previous Episode – Episode 17 – All At Sea – The Best Technology and Not Used. Why?
3. Launching the Unintended Consequences Series
4. Dr. George Erickson on LinkedIn
5. Dr. George Erickson’s Website, Tundracub.com
6. The full pdf version of Unintended Consequences
7. https://www.youtube.com/watch?v=nUg0QdtO6bQ
8. https://periodictable.com/Elements/090/pictures.html
9. https://www.youtube.com/watch?v=H6mhw-CNxaE
10. https://www.youtube.com/watch?v=N2vzotsvvkw
11. https://oilprice.com/Energy/Energy-General/Why-Hydrogen-Needs-Nuclear-Power-To-Succeed.html
12. https://www.linkedin.com/in/alan24/
13. https://www.ans.org/news/article-3472/hydrogen-the-best-shot-for-nuclear-sustainability/
14. https://www.linkedin.com/in/susan-bailey-gallier/
15. https://en.wikipedia.org/wiki/NuScale_Power
16. https://en.wikipedia.org/wiki/Terrestrial_Energy
17. https://www.wsj.com/articles/nuclear-power-generation-electricity-small-reactors-11629239179
18. https://www.nextbigfuture.com/2022/01/modular-molten-salt-reactors-starting-2028-in-canada.html
19. https://thehill.com/blogs/pundits-blog/energy-environment/247017-why-are-we-so-afraid-of-nuclear/
20. https://www.linkedin.com/in/jim-conca-2a51037/
21. https://www.aqua-calc.com/calculate/volume-to-weight

#UnintendedConsequences #GeorgeErickson #ClimateChange #FissionEnergy #NuclearEnergy #SpentNuclearFuel #MoltenSaltReactor #TheThoriumNetwork #Thorium #Fission4All #RadiationIsGood4U #GetYourRadiation2Day